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Abstract 

 

This thesis analyzes the informational content of option-implied information in a portfolio 

optimization context. Options are intended to price future contingencies and thus incorporate 

the market’s expectations about future states. Using this implied information inherent in 

exchange-traded options allows us to extract forward-looking density functions and moments 

of the underlying securities. For this purpose, we apply different techniques to interpolate the 

distribution and moments inherent in Dow Jones Industrial Average (DJIA) and S&P 100 

constituent options. We analyze the resulting information relative to different portfolio 

allocation strategies, and examine whether option-implied portfolios outperform their 

historical counterparts. For the period of analysis from January 1996 to January 2012 we find 

that options add forecasting power to a portfolio optimization problem. However, although 

option-implied portfolios outperform those based on historical information, differences are 

often insignificant. Only one strategy (BICM Adjusted) significantly outperforms the 

benchmark portfolios at all times. We can attribute this to its consideration of higher-order 

implied moments. The results for different optimization strategies and estimation periods are 

robust, and suggest that forward-looking information is inherent in exchange-traded options. 

In specific situations, this option-implied information proves to be a reasonable alternative to 

historical moment estimators. 
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1. Introduction 

Using historical return information to build expectations about future developments of a 

security is a common method in empirical finance. The return, volatility, or any other moment 

expectation is usually estimated over a historic period. Since historical information is often 

the best estimate for future developments, our expectations are fully retrospective and 

intermediate information is ignored in the investment process. However, one approach to 

consider market participants’ future expectations is to use option-implied information. 

Since options are intended to price future contingencies, they incorporate a fair amount of the 

market’s expectations about future states. Even though this information is no guarantee for a 

specific future market development, it allows us to build alternative expectations. Using 

option-implied information to construct a portfolio strategy should thus produce alternative 

allocations than historical information. Since option-implied information is forward-looking, 

these allocation strategies are expected to outperform common ones. 

This thesis aims to test different methodologies of extracting option-implied density functions 

and moments, and to compare their informational content within a portfolio optimization 

problem. To conduct this analysis, we investigate option-implied information of the Dow 

Jones Industrial Average and S&P 100 index constituents for the period from January 1996 to 

January 2012. In addition to the presentation and application of common techniques to extract 

option-implied variances, this thesis focuses on the derivation of option-implied covariances. 

We propose a new approach to increase the stability of forward-looking covariances using the 

Frobenius norm. Further, we develop a risk adjustment technique to translate option-implied 

covariances into the real-world space. To the best of our knowledge, this approach has not 

been analyzed in the literature so far. 

The remainder of this thesis is structured as follows. Chapter 2 covers the extraction of 

model-free distributions and density functions from exchange-traded options. By applying 

various fitting techniques and extrapolation methods, we are able to specify sufficient density 

functions for the models in chapter 3. Here we aim to derive option-implied volatilities and 

covariances, given the extrapolated information about the risk-neutral density function. 

Chapter 4 examines the risk adjustment of these methods, since we have only dealt with risk-

neutral densities thus far. The specified models are then empirically tested in chapter 5. This 

is done in a portfolio optimization context using different weighting schemes and 

performance measures to pin down the value added by forward-looking, option-implied 

information. Chapter 6 concludes the thesis by summarizing the most important results. 
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2. Extracting Risk-Neutral Densities and Option Prices 

The following chapters outline the methodology of extracting model-free implied volatilities, 

covariances, and density functions from exchange-traded options. The techniques to extract 

this distributional information are all closely connected. They rely on pivotal assumptions 

about the continuity of option-price-strike-pairs and the fundamental pricing relationship of 

contingent elementary claims. While implied moments can theoretically be extracted from 

traded options, limited availability of option prices restricts their direct estimation. Thus, 

some additional assumptions about the continuity and the tails of the derived distribution 

need to be imposed. 

The estimation of option-implied cross-moments suffers from similar deficiencies. The 

market for so-called basket options, necessary to derive cross-moments for equities, provides 

by far no complete coverage of all asset pairs. Therefore, extracting implied covariances also 

necessitates the application of additional structural assumptions. 

The following sections introduce the theoretical concepts and techniques to extract stock 

distributions and moments from option prices. In theory, the implied distribution is a more 

powerful tool than single moment observations. However, the discontinuous spectrum of 

available option-price-strike-pairs – in combination with the curse of differentiation – can 

produce significant estimation errors (cf. section 3.1.1). This necessitates the use of 

sophisticated approximation techniques to avoid potential errors in estimation. While the 

methodologies to extract option-implied distributional information differ, the main idea and 

theoretical building blocks remain the same. 

Before we analyze these methods in detail, chapter 2.1 gives a short overview on previous 

research conducted in the field of option-implied information. It also outlines the most 

important empirical contributions related to the research topic of this thesis. 

 

2.1. Literature Review 

While implied density functions and moments have received broad attention in the field of 

risk management, asset pricing, market timing, forecasting, and policy-making, there are 

only few papers focusing on the application of option-implied information in asset allocation 

(Kostakis, Panigirtzoglou & Skiadopoulos, 2011, p. 5; Ludwig, 2012, p. 2). More recently, 

however, there is a growing literature on implied probability density functions (pdfs) and 

moments in portfolio construction (Giamouridis & Skiadopoulos, 2012, p. 252). 
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The application of option-implied market information in portfolio selection can be traced 

back to Manaster & Rendleman (1982). They investigate the information contained in option 

prices with respect to future values of the underlying security. Similar to Black’s (1975) 

argumentation, they claim that – in the context of information revelation – investors regard 

options as superior compared to direct investments in the underlying asset. The reasons for 

this are: lower trading costs, fewer market restrictions, and higher liquidity in option rather 

than in stock markets. Using the Black & Scholes (1973) model, they derive option-implied 

stock prices of the underlying assets and compare them to actual market prices. The analysis 

reveals that portfolios invested in stocks with implied prices higher than the observed market 

price, outperform portfolios investing in stocks overvalued relative to the implied Black-

Scholes price. While they theoretically investigate the performance of a portfolio using 

option-implied information, the primary research focus lies on the analysis of information 

contained in option prices. Classifying this topic as related to option-implied portfolio 

selection is therefore debatable. 

More recently, Kostakis, Panigirtzoglou & Skiadopoulos (2011) used implied probability 

distributions derived from market option prices in an asset allocation context. They apply the 

methodology of Bliss & Panigirtzoglou (2004) to transform the risk-neutral distribution 

obtained from S&P 500 options to the corresponding risk-adjusted implied pdf. The results 

reveal that asset allocation on the basis of option-implied distributions shows a better 

performance than one where historical distributions are used. Zdorovenin & Pézier (2011) 

apply a similar research setting, but compare the performance of option-implied estimators 

with time-series model forecasts. They find that option-implied strategies outperform a GJR-

GARCH model only in the estimation period from January 1994 to March 2000, but not in 

the subsequent period from April 2000 to April 2010. Both research papers, however, are 

based on a simple two-asset setting with a risk-free and a risky asset. In this problem setting, 

correlations do not matter and no portfolio optimization is performed among the assets. The 

same limitation applies to the portfolio allocation problem of Jabbour, Peňa, Vera & Zuluaga 

(2008). They obtain the optimal allocation by minimizing a portfolio’s Conditional Value-at-

Risk corresponding to the distribution of the observed market option prices. Again, 

individual asset correlations are not considered. 

Aït-Sahalia & Brandt (2008), in contrast, use implied probability density functions and the 

martingale representation theory of Cox & Huang (1989, 1991) to solve an intertemporal 

consumption-investment problem. The analysis concentrates on the dynamic consumption 

and portfolio choice problem of an investor with a portfolio of stock, bond, and risk-free 
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investment (i.e. a three-asset allocation problem). The joint distribution between stock and 

bond is obtained from marginal densities using a Plackett (1965) copula, and corresponding 

parameters are calibrated using historical correlations of log-returns. However, the extension 

of this approach to a multi-asset case is limited and results were not tested in a portfolio 

allocation context. 

DeMiguel, Plyakha, Uppal & Vilkov (2012) analyze a portfolio selection problem using a 

large universe of individual stocks rather than a two asset framework. The analysis in their 

research paper focuses on option-implied moments and partially implied correlations. The 

idea of DeMiguel et al. (2012) is to assess whether option-implied information improves 

portfolio optimization. Their results suggest that portfolios optimized with respect to risk-

adapted, option-implied volatilities outperform their analogues based on historical 

information. However, no evidence for the superiority of implied correlations in portfolio 

selection, or improvements in the performance metrics are reported. 

Kempf, Korn & Sassning (2012) derive fully implied correlation estimates using a single 

index model and additionally introduce assumptions about the idiosyncratic risk component 

of single assets. The results of this study show a strong outperformance of the fully-implied 

portfolio strategy, compared to portfolios using historically estimated moments. 

 

After reviewing the most important research conducted in the field of option-implied 

information and its application to portfolio selection, the following chapters present the 

methods to extract the option-implied information used in this paper. 

 

 

2.2. Approximation of Density Functions 

Using a state preference model, Breeden & Litzenberger (1978) show that – under the 

assumption of no arbitrage – prices of elementary claims can be derived from European call 

options. This derivation is based on the seminal papers of Arrow (1964) and Debreu (1959), 

who formalized the concept of elementary claims in an economy of uncertainty. These 

claims are now known as Arrow-Debreu securities, and pay unity in one specific state of 

nature and nothing in any other state (Aït-Sahalia & Lo, 2000, p.11; Baz & Chacko, 2004, p. 

32). Thus, the price of any security today can be calculated by spanning its future payoff 

structure using Arrow-Debreu securities. “By construction, Arrow-Debreu securities [thus] 

have a probability–like interpretation” (Aït-Sahalia & Lo, 2000, p. 11). Breeden & 
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Litzenberger (1978) further show that under some limiting assumptions, the payoff structure 

of an Arrow-Debreu security in itself can be replicated by a portfolio of European options.
1
 

In the following, we will use this relationship to derive option-implied density functions. 

However, some limiting assumptions need to be imposed first. The relationship between an 

Arrow-Debreu security and its set of European options only holds under the assumption of a 

perfect free-of-cost capital market, without short selling or trade restrictions, and no capital 

frictions (Wallmeier, 2003, p. 69). Furthermore, investors can borrow at the risk-free rate of 

interest (Breeden & Litzenberger, 1978, p. 625). 

Having defined these basic assumptions, we introduce a risky asset of value    at a future 

date  . This asset has a discrete probability distribution in a finite state space with possible 

realizations in the set: 

 

                   } 

 

for                  (Britten-Jones & Neuberger, 2000, p. 842; Breeden & 

Litzenberger, 1978, p. 625). Thereby, S is defined as a discrete equidistant step-size 

between possible realizations, and    is the stock price at time  . 

Using this set, the price of an Arrow-Debreu security at time   – paying unity at   if      

– can be defined as        , given     and time-to-maturity      . By introducing a 

European call option with price   
      , strike    , and   as defined before, the Arrow-

Debreu security’s price can be replicated by combining different options. Its value is 

synthesized by      long call options with exercise price       ,      long call 

options with       , and      short call options with    .
2
 Rearranging terms and 

dividing both sides of the equation by   results in 

 

 
       

 
 

  
           

          
         

         

    
  (2.1) 

 

and in the limit as the step size tends to zero 

 

                                                           
1
 Each individual Arrow-Debreu security is defined for a specific state    . In contrast, a European option is 

dependent on the realization of the stock price    at  . However, the underlying stock price itself is a 

realization of a specific future state       and therefore also state dependent. Since Arrow-Debreu securities 

can be specified as being dependent on stock price realizations, the same intuition applies for stock prices as for 

states. 
2
 This option strategy is known as butterfly spread. 
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   

       

 
   

   
      

   
 
   

  (2.2) 

 

Equation 2.1 is the pricing function of an elementary claim on   – maturing at T – in the 

discrete case. Equation 2.2 is the equivalent pricing function in case of a continuous 

underlying
3

 (Breeden & Litzenberger, 1978, p. 627). Given a continuous probability 

distribution of the underlying asset, the price of an Arrow-Debreu security is specified by the 

second partial derivative of the European call-option pricing function with respect to the 

exercise price. 

Returning to the probability-like properties of Arrow-Debreu securities, we will show that 

the value of a derivative can be derived from elementary claim prices. This is true if its 

payoff is a known function of the underlying at a future date (Wallmeier, 2003, p. 67). The 

price   
  of a security m, with a state dependent continuous payoff function       , can 

therefore be defined as 

 

 

  
     

 

              

    
 

    
    

      

   
    

(2.3) 

 

where        is a function on the underlying asset’s probability space. The second line 

of equation 2.3 replaces the value of the Arrow-Debreu security         as stated in formula 

2.2.
4
 

Using this fundamental pricing relationship, we can now restate the continuous pricing 

function of a European call option in such a way as to receive the same calculus. Formula 

2.4 shows that the price of a European call option is calculated as the expected value of the 

payoffs at expiry, i.e. the payoffs weighted by their risk-neutral probabilities
5
 and discounted 

by the risk-free rate 

 

   
                      

        

 

 

  (2.4) 

 

                                                           
3
 Assuming that            , i.e. twice continuously differentiable. 

4
 In order to avoid double integrals   is fixed. 

5
 Expected value under the risk-neutral measure  . 
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Solving equation 2.4 for the risk-neutral density function   
 
     yields  

 

 
  

          
   

      

   
 
    

  

 

(2.5) 

The same applies to the cumulative distribution function (cdf) by taking the partial derivative 

of 2.4 with respect to   and solving for   
      

 

   
          

   
      

  
 
    

    (2.6) 

 

These results are due to the previously mentioned relationship between risk-neutral 

probabilities and Arrow-Debreu securities.
6
  

 

In reality, the set of strike prices is not continuous. Accordingly, options are only available 

for a limited range of strike prices and for a discrete time interval. However, an 

approximation of the pdf and cdf can be achieved through the application of finite 

differences. The cumulative density is then approximated by 

 

   
          

  
             

         

         
   (2.7) 

 

where the subscript     indicates a marginally bigger, and     a marginally smaller 

strike price.  The pdf in formula 2.5 is approximated by 

 

   
          

  
             

           
         

     
   (2.8) 

 

where    is the difference between two sequenced exercise prices in the equidistant set of 

strike prices. Ignoring the     term, this is similar to the   divided portfolio in formula 2.1. 

 

                                                           
6
 The put-call-parity states that                . Accordingly, put options   

        can be used instead 

of call options to obtain the probability density function (pdf) and the cumulative distribution function (cdf) of 

an underlying asset. The cdf is derived as   
                     and the pdf is obtained from   

      
                . 
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2.3. Fitting Technique 

In reality, options are only traded over a finite and discrete range of strike prices and do not 

provide a continuous call price function (Bliss & Panigirtzoglou, 2004, p. 415). Yet, option-

implied measures as well as the estimation of RNDs rely on this property. Even though 

formula 2.7 and 2.8 introduced finite difference methods to approximate density functions, 

the available mesh of data points is too widely spaced. Thus, no reasonable approximation to 

risk-neutral density functions (RND) or moments can be obtained from the initial dataset. 

This problem specifically applies to individual stock options, but also persists for index 

options which are actively traded and offer a more dense set of strike prices (Figlewski, 

2010, p. 334; Jiang & Tian, 2005, p. 1307). It suggests the use of interpolation techniques to 

approximate the call price function between available data points (Zdorovenin & Pézier, 

2011, p. 5; Figlewski, 2010, p. 334). However, the nonlinearity in the strike-option-price-

space leads to numerical difficulties in estimating an adequate interpolant. It is therefore 

technically difficult to fit the shape of an option pricing function directly (Jiang & Tian, 

2005, p. 1315; Brunner & Hafner, 2003, p. 76).
7
 To circumvent this problem, an indirect 

nonparametric method is utilized. Specifically, a continuous option pricing function is 

obtained by applying a curve-fitting procedure to the mapped volatility space.
8
 

Thereby, the technique of interpolating the call price function applies equally to the 

estimation of risk-neutral density functions, as to the direct estimation of implied moments 

(cf. chapter 3). Both measures suffer from the limited availability of option-price-strike-

pairs, and their estimation can generally be improved by using proper interpolation 

techniques. However, risk-neutral densities are much more sensitive to data perturbations 

due to the curse of differentiation. Finding proper fitting techniques is thus more demanding 

(see following paragraphs). 

 

David Shimko (1993) was the first to propose a transformation of market option prices into 

implied volatilities, and to apply the curve-fitting technique within this new implied-

volatility-strike-space. “The translation of option prices into implied volatilities eliminates a 

substantial amount of non-linearity” (Brunner & Hafner, 2003, p. 76). Moreover, implied 

volatilities tend to be smoother than option prices. This mapping procedure thus overcomes 

                                                           
7
 Bates (1991), for example, interpolates option prices directly in the option-price-strike-space applying a 

constrained cubic spline fitting on the ratio of option to Futures prices (p. 1019). 
8
 In reality, only a finite number of data points is extracted and actual data is therefore limited. Yet, the size of 

the discrete steps is set very small, which is why the term continuous is used in this context. 
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numerical difficulties emerging from the direct estimation of the option price function 

(Brunner & Hafner, 2003, p. 76). 

However, deriving implied volatilities from option prices requires a parametric assumption 

about the underlying price process or the option price function itself (Bliss & Panigirtzoglou, 

2002, p. 384). Generally, option prices are converted to implied volatilities using the famous 

Black-Scholes formula.
9
 In a second step, a continuous approximation (smoothing) function 

is fitted to the option-implied volatilities and the corresponding strike prices (Bliss & 

Panigirtzoglou, 2002, p. 384). Once a continuous implied volatility function is obtained, it is 

mapped back into the option price-space (Zdorovenin & Pézier, 2011, p. 5). The advantage 

of this procedure is its independence from presuming validity of the Black-Scholes model or 

log-normality of the underlying price process. It is simply used as a computational device to 

transform data into a measurement space more conducive to the interpolation technique 

employed (Figlewski, 2010, p. 336; Bliss & Panigirtzoglou, 2002, p. 385).  

One of the key challenges of volatility curve modeling – and the derivation of RNDs and 

implied moments – arises from errors and frictions: these are due to bid-ask bounces, non-

synchronous pricing, infrequent trading of underlying assets (liquidity premia), finite quote 

precision, and data errors (Fengler, 2005, p. 99; Bliss & Panigirtzoglou, 2002, p. 388). 

Specifically, data measurement errors can have a substantial impact on the estimation of 

RNDs because differentiation exacerbates noise (Rebonato, 2004). As it amplifies even 

minor irregularities, small pricing errors can have a large impact on the resulting RNDs 

(Bliss & Panigirtzoglou, 2002, p. 415; Bu & Hadri, 2007, p. 219).
10

 Together with the 

problem of limited data availability, this poses a significant challenge to the implied 

volatility fitting and the derivation of RNDs. Extracting well-behaved RNDs from option 

prices is, therefore, a non-trivial exercise. The curve-fitting technique must be chosen 

carefully and the interpolation calibrated so that the resulting approximation is smooth and 

provides a good fit. 

The risk of over-fitting the model to the observable data, giving too much weight to 

measurement errors and irregularities, always persists (i.e. high sensitivity to small 

perturbations in the data). Instead of capturing salient features of the underlying functional 

relationship, a distorted volatility model results, leading to sharp spikes in the corresponding 

                                                           
9
 Because the Black-Scholes formula cannot be inverted, the respective implied volatilities are obtained using a 

root finding algorithm. 
10

 The estimator quality of a function’s derivative is expected to be much worse than the quality of a function’s 

estimator itself. This phenomenon is referred to as the curse of differentiation (Bondarenko, 2003, p. 88). 
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RNDs (Ludwig, 2012, p. 3). On the other hand, restricting the flexibility of fitting methods 

can lead to kinks in the underlying distribution and the exclusion of salient data features. 

 

Implied volatilities can be interpolated using polynomials or splines (or mixed methods 

thereof). A spline is a piecewise polynomial that interpolates a function at n + 1 knot points. 

A key problem with splines is that the interpolation function must pass through each original 

data point. This forces the curve to incorporate measurement errors and pricing noise 

(Figlewski, 2010, p. 336). As a consequence, the resulting RND can show undesired 

properties as for example negative values and sharp spikes. However, implied moments are 

less sensitive to measurement errors, and thus a spline-based interpolation can provide 

accurate results. Further, low order splines are more stable and often yield better results than 

polynomials of the same order. This is because they avoid instability due to Runge’s 

phenomenon. In order to estimate the L + n + 1 parameters of an n-th degree spline and to 

cover all degrees of freedom, however, additional constraints need to be imposed (where L 

defines the number of fixed knots). Typically, the second derivative at the end-point knots is 

set equal to zero. The function thus approaches a linear form at the tails. This interpolation 

technique is referred to as a natural spline. 

In contrast, an n-th order polynomial bears the risk of undervaluing certain implied volatility 

points. By focusing on the best polynomial fit, salient features of the underlying density 

function may get lost – or in case of higher order polynomials – the model might be over-

fitted. Figlewski (2010) shows that RNDs behave well under a polynomial approximation of 

fourth order. However, fitting knots to the polynomial function reduces the degrees of 

freedom. 

 

Campa, Chang & Reider (1998) introduce the use of smoothing splines to interpolate the 

implied volatility curves. The smoothing spline technique allows a tradeoff between how 

closely the curve resembles the observed data points, and how smooth the derivatives of the 

spline are at the knot points (Figlewski, 2010, p. 336; Bliss & Panigirtzoglou, 2002, p. 416). 

It can therefore be regarded as a compromise between spline and polynomial interpolation. 

The use of smoothing splines permits to adjust the smoothness of the fitted function. It is 

controlled by a smoothness penalty parameter   that directly weights the integral of the 

squared second derivative of the function, i.e. its curvature (Bliss & Panigirtzoglou, 2002, p. 

417). 
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The natural spline minimizes the following objective function 

 

    
 

                    
 

               

 

  

 

   

   (2.9) 

 

where   is the matrix of polynomial parameters of the cubic spline (knot points and 

component polynomial parameters),      is the spline function,   the strike dependent 

weighting, and            the fitted implied volatility at    with parameters   (Bu & Hadri, 

2007, p. 220; Bliss & Panigirtzoglou, 2002, p. 417). While Bliss & Panigirtzoglou (2004) 

choose a   of 0.99, we observe good results at   = 0.995. However, they argue that forecast 

results are relatively insensitive to the choice of smoothing parameter. 

 

Besides the choice of the best interpolation method, its order is of critical relevance. A spline 

of third or lower order can, for example, produce kinks in the RND.
11

 Even though cubic 

splines ensure no discontinuities in the level, slope or second derivative of the implied 

volatility curve (at the knot points), this might not be the case for the derived RND. This is 

due to the discontinuous third derivative of the implied volatility curve translating to a 

discontinuous first derivative in the RND (Figlewski, 2010, p. 336). Therefore, Figlewski 

(2010) proposes using a polynomial of at least fourth order instead of a cubic spline. 
 

 

Figure 1 Option-implied volatility curve for the S&P 100 index using cubic spline, fourth-order 

polynomial, and smoothing spline interpolation (date of estimation: December 19, 2005, option expiration: 1 

month,        ) 

                                                           
11

 As previously mentioned, the implied moments using the methodology of Bakshi, Kapadia & Madan (2003) 

are less sensitive to these deviations. 
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Figure 1 presents an option-implied volatility curve using a cubic spline, a fourth-order 

polynomial, and a smoothing cubic spline interpolation (       ) for S&P 100 index 

options. While the cubic spline is restrictive and goes through every observable data point, 

the polynomial of fourth order provides a smooth curve that is less sensitive to perturbations. 

As figure 1 further indicates, the smoothing cubic spline interpolation is a compromise 

between the other two methods. However, this example is biased due to presence of several 

traded options over a broad spectrum of strike prices.
12

 Even though the smoothing cubic 

spline and polynomial of fourth order are intuitively appealing, the cubic spline interpolation 

also provides very accurate results. This is particularly true for the direct estimation of 

implied moments (cf. section 3.1.1). In the remainder of this thesis, the polynomial of fourth 

order and smoothing cubic spline interpolations are used for the derivation of RNDs, as they 

provide well-shaped distributions (cf. next section). 

 

 

2.4. Extrapolation Method 

In reality, options for a specific asset are only available for a limited scope of strike prices 

and do not extend very far into the tails of an underlying asset’s distribution. They typically 

cluster in a narrow range around the current asset price. Therefore, the set of available 

options is not only sparse, but also very limited in its range of available strike prices (Jiang 

& Tian, 2005, p. 1315; Figlewski, 2010, p. 342). However, Jiang & Tian (2005) show that 

the option-implied variance can also be derived within this bounded set, not extrapolating 

the tails of the distribution. They use a simple truncation at the outset of available option-

price-strike-pairs, and find that the corresponding approximation error is relatively small 

when truncation points are more than two standard deviations away from the current Futures 

price (p. 1312). 

However, in empirical applications, the range of available strike prices is often not 

sufficiently large for an accurate application of this truncation methodology.
13

 Using 

extrapolation methods to replicate the tails of a distribution, therefore, provides more 

adequate results. However, this procedure introduces another approximation inaccuracy in 

exchange for the truncation error (Jiang & Tian, 2005, p. 1316). Nevertheless, Jiang & Tian 

(2005) show – using a stochastic volatility and random jump (SVJ) model – that 

extrapolating implied volatilities leads to more accurate approximations than a simple 

                                                           
12

 Stock options have usually fewer observable strike-option-price-pairs. 
13

 Especially for individual stocks there are only few available options for a specific maturity date. 
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truncation methodology.
14

 They further demonstrate that the approximation error is 

positively related to maturity and negatively to the truncation interval. Specifically for longer 

maturities (60 days and more), the extrapolation technique outperforms the truncation 

methodology for every range of strike prices applied in their model setting. Even though 

Jiang & Tian (2005) use the implied variance model of Britten-Jones & Neuberger (2000), 

their results can also be transferred to the methodology employed in this thesis.
15

 However, 

it cannot be extended to the estimation of higher moments such as skewness and kurtosis, 

since these are much more sensitive to small variations in the tails of the distribution (Bliss 

& Panigirtzoglou, 2002, p. 389). 

 

Several techniques to extrapolate the tails of the volatility surface have been proposed in 

practice. In his seminal work, Shimko (1993) extends the volatility smile by extrapolating 

the end points of the implied volatilities horizontally. Hence, the volatility smile is assumed 

to be constant beyond the maximum and minimum strike prices (Jiang & Tian, 2005, p. 

1316). As the implied volatilities are derived in the Black-Scholes framework, extending the 

volatility curve horizontally is equal to appending log-normal tails to the RND (Figlewski, 

2010, p. 342; Kostakis, Panigirtzoglou & Skiadopoulos, 2011, p. 8; Zdorovenin & Pézier, 

2011, p. 5). However, adding lognormal tails might be too stringent, given the extensive 

empirical evidence of fat tails in return distributions. While this procedure allows the 

derivation of well-defined option prices, it can produce kinks in the derived probability 

density function. 

 

Figlewski (2010) proposes to extend the empirical RND by adding tails of suitable 

parametric probability distributions, namely the Extreme Value distribution. The Fisher-

Tippett theorem proves that – under weak regularity conditions – the maxima in a sample 

drawn from an unknown distribution, converges in its distribution to a Generalized Extreme 

Value distribution (GEV; Figlewski, 2010, p. 342). According to Figlewski (2010), the GEV 

distribution is therefore a reasonable choice to model the tails of an unknown RND. The 

class of GEV distributions is very flexible, with the parameter   determining the “tail, shape, 

and size of three different distributional families subsumed under it” (Markose & Alentorn, 

2011, p. 39). 

                                                           
14

 Jiang & Tian (2005) use the endpoint implied volatility to extrapolate option prices. This procedure was first 

presented by Shimko (1993). 
15

 The models of Britten-Jones & Neuberger (2000) and Bakshi, Kapadia & Madan (2003) are theoretically and 

conceptually closely related. 
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The GEV distribution function is given by 

 

                        (2.10) 

 

If    , the tail comes from a Gumbel class distribution that includes the normal, 

exponential, gamma, and lognormal distribution. Because the tail index       is equal to 

infinity, all moments of the distribution are either finite or zero. In case of     , the 

distribution belongs to the Fréchet class. These are fat-tailed distributions such as the Pareto, 

Cauchy, or Student-  (Markose & Alentorn, 2011, p. 39). The class of distribution associated 

with     is called Weibull. This distributional type is short-tailed and has finite upper 

bounds. The class includes distributions such as the uniform and beta. If the shape parameter 

  is different from zero, i.e. if the distribution is either of the Weibull or the Fréchet class, 

the additional restriction        applies.
16

 This condition imposes a truncation of the 

probability mass, which needs to be considered when estimating the implied probability 

density function. 

In addition to the shape parameter, the GEV distribution can incorporate a location 

parameter   and a scale parameter   by 

 

    
     

  
  (2.11) 

 

where the subscript   indicates that the right tail distribution is extended. The extrapolation 

of the implied density using a GEV distribution thus requires the estimation of three GEV 

variables: location, scale, and shape.
17

 

To fit the GEV distribution to the right tail of the implied RND, several conditions are 

introduced. We follow the notation of Figlewski (2010) and use         to denote the 

approximating GEV distribution for the right tail. The corresponding density function is 

       . Finally, the empirical implied RND is denoted by         and the implied cdf by 

       . 

                                                           
16

 For further details on the GEV distribution it is referred to Embrechts, Frey & McNeil (2005). 
17

 For the optimization conditions and the derivation of the left tail GEV extrapolation, it is referred to 

Figlewski (2010). 
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Let   be a function such that            and   be a quantile of the risk-neutral 

distribution. The function      then gives the exercise price of the corresponding  -quantile 

of the RND (Figlewski, 2010, p. 343). The conditions are 

 

 

                  

                          

                           

(2.12a) 

(2.12b) 

(2.12c) 

 

where         are two different upper quantiles of the empirical probability density with 

       . 

The first equation 2.12a imposes the condition that the total probability in the tail of the 

empirical distribution corresponds to the approximating GEV distribution (Figlewski, 2010, 

p. 343). Formula 2.12b and 2.12c define the density of the empirical distribution and the 

GEV as equal at the two  -quantiles, assigning a similar shape to the tails of the 

approximating density function. The GEV parameter values can then be calibrated using 

standard optimization procedures (Figlewski, 2010, p. 343). In this thesis, a grid search, in 

combination with a Nelder-Mead algorithm, is applied. Using a set of different starting 

values, the GEV parameters producing the lowest estimation error can be found. 

The choice of     and     is flexible and subject to the constraint that the corresponding 

exercise prices can be derived from the implied RND. However, the GEV distribution fits 

better at extreme strike prices, appending extreme tails to the density. Thus, a trade-off 

persists between data availability
18

 and the quality of extrapolation. 

 

Figure 2 shows an example of the Figlewski methodology applied to the implied RND of a 

one-month-to-maturity option on the S&P 100 index. A smoothing cubic spline interpolation 

with         is used. In this example, the left tail GEV distribution belongs to the Fréchet 

(Gumbel) class, whereas the right tail GEV is a Weibull class distribution. Since extreme 

realizations of the underlying asset are rarely observed (especially in the short term), there is 

little information about the appropriate shape that should be applied to the tails of the density 

function (Bliss & Panigirtzoglou, 2004, p. 416). However, according to Bliss & 

Panigirtzoglou (2004), the scarcity of information of tail events implies that the results are 

                                                           
18

 Data availability does not only describe the physical presence of option contracts on the market, but also the 

reliability of the data itself. The application of different filters aims at reducing the data to an adequate sample 

for the inter- and extrapolation. Near-the-money options are, for example, often more liquid and more reliable. 

Thus, this trade-off also applies to the problem of choosing an adequate data filter. 
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not critically dependent on the choice of the extrapolation method, as long as they are 

economically reasonable (p. 416).  

 

 

Figure 2 Tail distribution extrapolation for the S&P 100 index using the Figlewski method and a 

smoothing cubic spline interpolation (date of estimation: November 20, 2000, option expiration: 1 month, 

       )  

 

The empirical RND, combined with the GEV tails in figure 2, is intuitively appealing and 

fits well with empirical observations. Especially the existence of tailedness and negative 

skewness are observations that have recently been made more frequently in the equities 

market. One limitation, however, is the fact that these distributions are risk-neutral and do 

not reflect true pdfs. Their informative value must, therefore, be considered carefully under 

the awareness of this restriction. For example, Bakshi, Kapadia & Madan (2003) show that a 

symmetric distribution can be deformed under certain conditions, producing a skewed 

distribution under the risk-neutral measure.
19

 However, Aït-Sahalia & Lo (2000) argue that 

the RND can also provide additional information in circumstances surrounding losses and is 

therefore especially suited for risk-management (p. 10). This conclusion can also be 

transferred to the risk-based portfolio optimization strategies applied in section 5.3.3. 

Furthermore, chapter 4 considers a risk adjustment of the implied moments and distributions 

to reduce this problem. 

 

                                                           
19

 Bakshi, Kapadia & Madan (2003) name three main reasons for the negative skewness in the risk-neutral 

index distribution. First, the presence of negative skewness in the physical distribution causes the risk-neutral 

distribution to be negatively skewed as well (p. 109). Second, the skew of the risk-neural distribution and the 

kurtosis of the physical distribution appear to be inversely related. Third, the risk aversion parameter makes the 

risk-neutral density negatively skewed under the condition that the excess kurtosis is bigger than zero. For a 

mathematical proof of these findings it is referred to Bakshi, Kapadia & Madan (2003). 
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To test the adequacy of the presented extrapolation methods, an analytical option-pricing 

model is introduced. Backus, Foresi & Wu (2004) use a Gram-Charlier expansion
20

 up to the 

fourth order in the distribution of returns and provide an analytical solution for the pricing of 

options on non-normally distributed underlying assets. Within this model framework, call 

and put prices can be approximated using a closed-form solution.
21

 

This model has a key advantage. It does not employ the usual normal distribution 

assumption and includes skewness and kurtosis in its estimation. Consequently, accuracy of 

extrapolation methods can be tested under the assumption of negative skewness and 

leptokurtosis. Both characteristics are often observed for stock price distributions. 

Furthermore, because the model provides a closed-form solution for call prices within the 

interpolation region, the estimation error caused by the interpolation can be excluded. Only 

deviations due to misspecifications of the extrapolation technique are considered. 

Figure 3 provides estimation errors of the Shimko extrapolation compared to a simple 

truncation for a parametric Gram-Charlier expansion model.
22

 The approximation error is 

reported with respect to a standardized strike-price-range and the available interval of strike 

prices is simply put into relation to the initial stock price. A standardized value of 0.3 then 

indicates that the strike-price-range for the estimation lies within 0.7 and 1.29 in terms of 

moneyness (strike prices are extended symmetrically in the simulation). The approximation 

error is reported in percentage values with respect to the true volatility. 

Figure 3 shows that – in the model setting applied – the extrapolation method provides more 

accurate results for the estimation of option-implied moments. As expected, the 

extrapolation error for higher moments tends to increase (in absolute terms) faster than for 

                                                           
20

 This approach was pioneered by Jarrow & Rudd (1982). 
21

Proposition 1 in  Backus, Foresi & Wu (2004) states that call and put prices can be approximated by 

 

                               
   

  
         

   

  
              

     

 

where   is defined as in the Black-Scholes model (without dividends):                    
        ,  

  indicates the cumulative distribution function,   the density of the normal distribution function,    the  -

period volatility, and    ,     the  -period skewness and kurtosis, respectively (p. 7). This formula is derived 

under the assumption that the spot rate evolution follows the probability density specified by the Gram-Charlier 

expansion and additional restrictions (cf. Backus, Foresi & Wu, 2004). 
22

 The moments are derived using the same methodology for the Shimko and the Figlewski approach. Because 

the GEV distributions can only be fitted after the pdf and the cdf are derived from the option prices, we apply a 

backward-induction technique to formula 2.7 and 2.8 using the initial option prices. This allows us to 

circumvent the curse of differentiation within the interpolation region. Consequently, the same moment 

calculation formula can be used for the Shimko as for the Figlewski extrapolation. 
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corresponding variance estimates. However, the Shimko extrapolation provides more 

accurate results for all moments under consideration. 

 

 

Figure 3 Approximation errors of the Shimko extrapolation compared to the simple truncation method 

using a parametric Gram-Charlier expansion model (with initial stock price of 101, volatility of 0.2, interest 

rate of 0.05, zero dividend yield, and skewness and kurtosis values of -0.6 and 3.6, respectively; option 

expiration: 3 months, interpolation method: cubic spline) 

 

Unfortunately, the Shimko and Figlewski extrapolation cannot be compared in this model 

framework. The Gram-Charlier expansion model provides wave-shaped implied volatilities 

that translate to non-coherent implied pdfs. The Figlewski extrapolation is prone to the risk 

of misfitting the GEV in these cases. However, we tested all periods under consideration for 

the index options in our sample and found no indication that the same problem persists for 

actual option data. The applied interpolation techniques smooth possible outliers in implied 

volatility that would cause similar problems in real-world data.  

 

 

2.5. American Option Volatility Modeling 

The validity of the models and techniques presented so far have been based on European 

options. In practice, however, most exchange-traded stock options are of American rather 

than European exercise type. Hence, the derivation of option-implied moments and their use 
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in portfolio selection is theoretically restricted to strategies for which European options 

exist.
23

 The application of option-implied methodologies to a wider class of underlying 

assets may thus be prevented by the inability to handle American options and the limited 

availability of European exercise style options (Tian, 2011, p. 17).  

To build portfolio selection strategies that are based on option-implied stock information, we 

need to derive European option prices from American stock options. Once this is achieved, 

the usual techniques can be applied to calculate the option-implied density and its moments 

(cf. chapter 3). Hence, the problem boils down to the estimation of the early exercise 

premium and its subtraction from American option prices. 

 

Tian (2011) tests three different approaches to extract European from American option 

prices. These are the Cox, Ross & Rubinstein method (CRR, 1979); the analytical 

approximation to early exercise premium (AA; cf. Barone-Adesi & Whaley, 1987); and the 

iterative implied binomial tree approach (iIB). Among these different methodologies, Tian 

(2011) favors the iIB approach because it uses the whole spectrum of available American 

options to find the best fitting binomial tree. The AA as well as the CRR model, in contrast, 

treat each option separately and ignore prices of other options (Tian, 2011, p. 18). 

Furthermore, Tian (2001) argues that the iIB is an accurate estimation procedure, able to 

extract option prices across a wide range of strike prices. The CRR and the AA model, in 

contrast, may fail when an option is sufficiently in-the-money (Tian, 2011, p. 18). 

Nevertheless, the CRR has some major advantages: it is simple to implement and widely 

used in practice; furthermore, it provides very accurate results, especially for out-of-the-

money options; and it makes no model assumptions, unlike the AA model (Tian, 2011, p. 

23). The drawbacks of this method are the numerical difficulties in estimation. Therefore, 

implied volatilities sometimes cannot be derived for deep in-the-money options. However, 

out-of-the-money put and call options can be combined to span the full range of strike prices 

necessary for the numerical implementation (Tian, 2011, p. 22). Consequently, the well-

known Cox, Ross & Rubinstein model is used in the remainder.  

The estimation of option-implied volatilities using the CRR model is based on a binomial 

tree approach fitted to the option price observations. Since volatility is the only unknown 

input parameter, the CRR model is run iteratively, re-estimating the volatility parameter until 

the model and the market price converge. However, a potential problem arises from the 

                                                           
23

 Most index options are of European exercise style. Thus, a market index strategy with exchange-traded funds 

(ETF) as investment base would be a possible candidate for a portfolio selection strategy. 
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assumption that American and European exercise-style options with the same strike price 

and maturity have identical implied volatilities (Tian, 2011, p. 21). The payoff of a European 

option is entirely driven by the price distribution at expiration (Tian, 2011, p. 22). Therefore, 

its value and implied volatility can be defined by the average volatility of the underlying 

asset over the maturity period. The value of an American-style option is, in contrast, 

composed of potential payoffs at maturity and at the early exercise boundary (Tian, 2011, p. 

22). Consequently, the average volatility over the life of an option is no longer sufficient 

since it does not properly reflect the fraction of option value attributable to its early exercise 

contingency (Tian, 2011, p. 22).  

One way to address this problem is to use out-of-the-money options for the extraction of 

European option prices (Tian, 2011, p. 22). As the probability of early exercise is lower for 

out-of-the-money options, the difference in implied volatility between American and 

European options is likely to be smaller.
24

 Furthermore, out-of-the-money options are often 

more liquid and thus provide more reliable prices. Using out-of-the-money options to derive 

implied volatilities of American options thus has several advantages: it allows to circumvent 

liquidity issues, misspecification of implied volatilities due to early exercise boundaries, and 

numerical difficulties in estimation of the implied volatility. 

Dividend payments are a critical issue complicating the estimation of American as well as 

European options. Typically, the underlying of an equity option pays quarterly dividends 

(Tian, 2011). Fortunately, the consideration of discrete dividends in the valuation of options 

has already found wide coverage in past literature. Therefore, well-known adjustment 

procedures can be applied. Black (1975) suggests reducing the initial price of the underlying 

asset by the present value of the expected dividends during the remaining life of the option 

(Tian, 2011, p. 22). As the CRR model is a discrete time step procedure, the exercise 

decision of the American option can easily be adapted to account for these dividend 

payments.  

                                                           
24

 The value of deep in-the-money American options, in contrast, is mostly derived from its intrinsic value. 

Accordingly, the implied volatility does not account for the correct fraction of the option value. Due to this, 

deep in-the-money American options are also no longer sensitive to changes in the volatility of the underlying 

asset. Even large changes in volatility only have a small impact on the American option price. The sensitivity 

of the option price with respect to its volatility, however, is central to back out implied volatilities form 

American options using the CRR binomial tree model (Tian, 2011, p. 22). 
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3. Option-Implied Moments 

Chapter 2 introduced the techniques necessary to extract accurate density functions from 

exchange-traded options. The following paragraphs will discuss how specific moments of a 

distribution will be derived from option-inherent information.  

 

3.1. Implied Volatilities 

3.1.1. Direct Estimation Method 

Similar to chapter 2.1, a single risky asset with initial price    and terminal price    is given. 

Furthermore, a riskless security       exists, paying unity at expiration  . The value of this 

asset is defined by           , where      . Moreover, out-of-the-money European 

call and put options are assumed to be available for a continuum of strike prices.
25

 Carr & 

Madan (2001) show that, given these assets and assumptions, any twice continuously 

differentiable function            can be replicated by 

 

 

                                                
 

  

                 
  

 

  

 

(3.1) 

where                      represents the maximum operator (see appendix A for 

proof). Intuitively, the position in the bond and stock create a tangent to the payoff function 

at the initial stock price (Carr & Madan, 2001, p. 22). The positions in the options are then 

used to replicate the curvature and thus bend the tangent line to match the payoff function at 

all prices (Carr & Madan, 2001, p. 22; Bakshi, Kapadia & Madan, 2003, p. 106). 

Consequently, any desired function      of the future realization    – subject to the above 

restrictions – can be spanned by a portfolio of risk-free bonds, stocks, and options. 

Formula 2.3 in chapter 2 shows that the price of any claim       integrable with respect to 

the risk-neutral density (i.e.           
           

 

 
), can be obtained through risk-neutral 

valuation. The respective call price function is then derived as shown in formula 2.4. 

                                                           
25

 This assumption is essentially the counterpart to the standard assumption of continuous trading (Carr & 

Madan, 2001, p. 22). 
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Discounting the payoff function in 3.1 by the risk-free rate and taking the risk-neutral 

expectation, yields the arbitrage-free price 

 

 

  
                              

             

                 
 

  

 

                 
  

 

  

(3.2) 

 

Consequently, the payoff function can be replicated by a unique initial position       

        in a zero-coupon bond,        in the stock, and a linear combination of out-of-the-

money call and put options with weights          indexed by   (Carr & Madan, 2001, p. 23; 

Bakshi, Kapadia, Madan, 2003, p. 106). The current aggregate market value of this 

replicating portfolio provides an option-implied forecast of       (Christofferesen, Jacobs 

& Chang, 2012, p. 21). 

Bakshi, Kapadia & Madan (2003) use these results to derive higher moments of the 

underlying distribution. They first define the  -period return as                     . 

Based on this return definition, they characterize a quadratic contract            
 , a 

cubic contract            
 , and a quartic contract            

 . The fair value of the 

respective payoffs is obtained by discounting them by the risk-free rate, and taking the 

expectation under the risk-neutral measure  . These values are denoted by       

            
  ,                   

  , and                   
  , respectively 

(Bakshi, Kapadia & Madan, 2003, p. 106; Rouah & Vainberg, 2007, p. 352).  

Bakshi, Kapadia & Madan (2003) further show that – under all martingale pricing measures 

– the variance, skewness, and kurtosis can be recovered from market prices of out-of-the-

money European call and put options using these contracts. Because the stock is a martingale 

under the measure  , such that the mean stock return is                  
   , it 

follows that 

 

 

       
  

  
                 

             
 

 
        

   
 

 
        

   
 

  
        

    

 

(3.3) 
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since                                 . Restating finally leads to 

 

          
  

  
        

   

 
      

   

 
      

   

  
       (3.4) 

 

The risk-neutral variance then follows directly from 

 

 
                                

   

                                        
 
  

(3.5) 

 

Appendix B provides the formulas for the calculation of quadratic, cubic, and quartic 

contracts, as well as for the skewness and kurtosis measures. 

 

 

This appraoch allows estimation of implied moments directly from market option prices, 

without imposing any distributional assumption or functional form about the stock price 
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Figure 4 Option-implied and historically estimated volatility, skewness, and kurtosis of the DJIA index 

options using Shimko extrapolation and direct estimation (estimation period: October 1997 to January 

2012, option expiration: 1 month, interpolation method: smoothing cubic spline,        , historical 

observation period: 60 and 250 days) 
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distribution (Rouah & Vainberg, 2007, p. 352). In literature, it is commonly referred to as 

model-free estimation. This methodology does not suffer from estimation errors due to the 

curse of differentiation, and is solely based on observed (or interpolated) market option 

prices. As a consequence, it is more robust to data misspecifications than an estimator 

derived from implied distributions. Figure 4 plots the implied variance, skewness, and 

kurtosis of DJIA index options for the period between October 1997 and January 2012, 

utilizing the methodology of Bakshi, Kapadia & Madan (2003). It further presents the results 

for historical moment estimates as means of comparison. 

 

3.1.2. Indirect Estimation Method 

The option-implied moments of an underlying asset can also be estimated by deriving its pdf  

(formula 2.5) and transforming the stock prices to log-returns using change of variables. As 

the implied moments are inferred from implied pdfs that themselves are derived from 

transformed option prices, this approach is referred to as the indirect method of estimating 

the implied moments. 

We define   to be a continuous random variable with density       and   to be a one-to-one 

transformation of   , i.e.       . This guarantees the derivative of          with 

respect to   to be continuous (Figlewski, 2010, p. 40). Accordingly,        is a 

continuous random variable with density 

 

        
 

  
                   (3.6) 

 

where     is the inverse function. The stock price distribution     
 

     can thus be 

transformed into the return distribution     
                

      with       

          . The derivation of the implied moments is then straightforward using 

approximations for the integral. The variance is derived by 

 

                       
      

 

  

  (3.7) 

 

where         
      

 

  
. Note that the range of the integral has changed accordingly.  
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Alternatively, the variance is obtained by 

 

 

                                

         

 

 

    
                   

      

 

 

 

 

  
(3.8) 

 

However, a serious weakness of the indirect estimation method is the risk of measurement 

errors due to the curse of differentiation. Small perturbations can produce large estimation 

errors in the derived RND. Simple techniques such as the Shimko extrapolation might work 

well under the direct model of section 3.1.1, but can lead to large measurement errors if 

applied to the indirect method. It is therefore critically important to choose fitting methods 

providing well-behaved implied RNDs. Even though the direct method is more robust to 

data perturbations, there are situations where it cannot be applied. For example, when the 

distribution is risk-adjusted using a pricing kernel, the direct method can no longer be used 

(cf. chapter 4). 

 

 

3.2. Implied Covariance 

After having introduced the concept of deriving option-implied variance estimators for 

single stock and index options, the estimation of the “implied” covariance matrix is the next 

step forward. Unfortunately, only few instruments reveal information about the joint 

distribution of two different assets in the equities market. Even though basket options exist, 

they hardly cover the full spectrum of available single stock combinations. 

In order to derive implied covariances, some structural assumptions about the correlation 

structure of equities must be imposed. In the following sections, three concepts to derive 

covariance matrices incorporating option-implied information are presented. These are the 

adapted historical covariance model (AHCM), the beta implied covariance model (BICM), 

and the mixed implied covariance model (MICM). 

 

3.2.1. Adapted Historical Covariance Model (AHCM) 

DeMiguel et al. (2012) utilize a partially implied technique to derive the correlation matrix 

from traded options, based on a heterogeneous implied-correlation matrix approach as 
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proposed in Buss & Vilkov (2012). The resulting correlations are then combined with 

option-implied volatility estimates to construct the covariance matrix. The standard equation 

for the portfolio variance implies that the variance of a portfolio at time   over a  -day 

horizon can be decomposed into 

 

     
       

     
                          

 

   

   

   

 

   

  (3.9) 

 

where      is the weight,   is the number of stocks, and      the volatility of stock   at time  . 

Further,       denotes the pair-wise correlation between stock   and  , and     
  the variance of 

the portfolio at time  . The volatilities (variances), weights, and correlations are all measured 

over the same time-horizon (Skintzi & Refenes, 2005, p. 6). Assuming that the volatilities 

and weights are known, there are still           degrees of freedom – i.e. unknown 

pair-wise correlations        – and only one equation. Accordingly, Buss & Vilkov (2012) use 

a simplifying assumption and introduce a fixed proportion single state variable   . Initially, 

DeMiguel et al. (2012) assume that the difference between the historical and the expected 

correlation is equal to a fixed proportion   , multiplied by the difference between the perfect 

and the historical correlation 

                          (3.10) 

 

Solving for        and substituting it into equation 3.9 results in 

 

     
                           

    

             (3.11) 

 

Rearranging yields the fixed proportion   , which is defined as 

 

     
    

                           

                             

  (3.12) 

 

The expected correlation        can be derived by substituting    into 3.10 and rearranging 

terms. The resulting estimate for the correlation matrix contains option-implied information, 

mixed with historical estimates of the correlation matrix.  
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Since, the covariance matrix can be decomposed into a diagonal matrix   of standard 

deviations and a correlation matrix   such that 

 

          (3.13) 

 

the implied covariance can easily be obtained by combining the separately estimated implied 

volatilities and the correlation matrix. This approach is referred to as adapted historical 

correlation model (AHCM). 

 

 

3.2.2. Beta Implied Covariance Model (BICM) 

Kempf, Korn & Sassning (2012) propose an alternative model that is based on fully implied 

covariance estimates. They make two distinct assumptions in order to derive the implied 

covariances from a cross-section of traded options. 

First, they assume that stock returns follow a generalized version of the Sharpe (1963) 

market model with time-varying coefficients 

 

                                            (3.14) 

 

where      and      are the returns of the  -th stock and the market, respectively. The 

idiosyncratic error term      is zero mean and its variance is independent of the market return. 

The variables      and      are the time-varying coefficients of the model. Furthermore, the 

error terms      and      are assumed to be independent for     (Kempf, Korn & Sassning, 

2012, p. 5). The market model implies that asset returns contain two sources of risk, which 

can be completely described by two factors. These are a market-related, systematic risk 

component; and an idiosyncratic, firm-specific risk factor. Accordingly, the covariance of 

returns only depends on the beta coefficients and the variance of the market returns: 

 

                                                (3.15) 
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The problem of estimating the co-moment between two different stocks, therefore, reduces 

to identifying stock related market betas. While a second assumption needs to be imposed to 

derive these beta coefficients, the (implied) variance of the index in formula 3.15 is directly 

obtained from traded index options. 

Second, a restriction is applied to the variance of the return distribution. It is assumed that 

the same proportion    of total variance is systematic for all assets such that     
           

            and                          . The return variance of the  -th stock can 

then be stated as 

 

               
                            (3.16) 

 

where       . Note that stocks with a higher total variance have both, higher betas and 

higher idiosyncratic risks (Kempf, Korn & Sassning, 2012, p. 5). As noted by Kempf, Korn 

& Sassning (2012), this fits well with the empirical evidence published since the seminal 

work of Fama & MacBeth (1973). 

When formula 3.16 is rearranged we obtain  

 

        
   

 
         

         
 

   

  (3.17) 

 

As the beta of a portfolio is the weighted sum of its constituents, the proportion    can be 

derived by using the weights      for         corresponding to the stocks’ share in the 

market portfolio. This results in
26

 

 

          

 

   

        
   

 
         

         
 

   

  

 

   

  (3.18) 

 

Rearranging formula 3.18 with respect to    yields: 

 

    
         

               
    

    
  (3.19) 
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 The market portfolio has by definition a beta of one. 
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When the proportion    in formula 3.19 is substituted into 3.18 and the resulting betas are 

used to regroup formula 3.15, this finally yields: 

 

                
         

   
         

   

               
    

    
                     (3.20) 

 

Thereby, no cross-moments appear in formula 3.20. Consequently, the covariance can be 

calculated by using only individual stock variances and the variance of the market portfolio 

(Kempf, Korn & Sassning, 2012, p. 6). The resulting covariance matrix is guaranteed to be 

positive definite by construction. Although all elements of the covariance matrix are 

restricted to be positive (which can be considered as a strict condition), the fact that stock 

returns generally tend to be positively correlated supports this assumption (Ledoit & Wolf, 

2003, p. 605). 

 

Kempf, Korn & Sassning (2012) show that alternative estimators of the implied covariance 

matrix can be derived by using higher-order moments. The assumption about the proportion 

of systematic variance is thereby simply replaced by the corresponding assumption about the 

proportion of systematic risk inherent in skewnes or kurtosis.
27

 Note, however, that positive 

definiteness of the extracted covariance matrix is no longer guaranteed. Kempf, Korn & 

Sassning (2012) provide empirical evidence of the severity of this problem (p. 16). Another 

drawback of this approach is that higher moments give more weight to tail observations. As 

a consequence, estimation is more sensitive to the choice of the applied extrapolation 

method. Estimating the beta coefficients using implied variances is thus likely to be more 

robust than the corresponding methodologies using higher-order implied moments. 

 

Chang, Christoffersen, Jacobs & Vainberg (2009) propose a different model to extract the 

implied beta coefficient. Similar to Kempf, Korn & Sassning (2012), they assume that 

returns on the  -th stock follow the market model presented in formula 3.14. The skewness 

of stock   can then be calculated as 

 

                                                           
27

 In appendix C, the third and fourth moment to extract the implied covariance matrix using these alternative 

methodologies are shown. 
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(3.21) 

 

Solving for      yields 

 

 

       
          

          
  

         

         
 

   

  
          

          
  

         

         
 

   

 

   

  

(3.22) 

 

However, because the idiosyncratic moments cannot be implied from option prices, suitable 

identifying conditions need to be imposed. The market beta can, for example, be obtained by 

assuming that the skewness of the idiosyncratic shock is zero 

 

       
          

          
 

   

 
         

         
 

   

  (3.23) 

 

Equation 3.23 implies that the beta is only well-defined if the market return skewness is 

sufficiently away from zero (Chang et al., 2009, p. 12). Chang et al. (2009) show in an 

empirical study that the market skewness is indeed typically negative and large in magnitude 

(p. 12). Thus, the beta is assumed to be well-behaved with respect to this condition.
28

 

Once the beta coefficients are obtained, they are substituted into formula 3.15 to obtain the 

covariance matrix. However, in contrast to the methodology proposed by Kempf, Korn & 

Sassning (2012), the resulting covariance matrix is not guaranteed to be positive semi-

definite. In  the following, this model is referred to as BICM Adjusted. 

 

                                                           
28

 If idiosyncratic skewness and variance are constant over a pre-specified rolling period, formula 3.22 instead 

of formula 3.23 can be used to derive the implied beta estimates (Chang et al., 2009, p. 12).  
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3.2.3. Mixed Implied Covariance Model (MICM) 

The Beta Implied Covariance Model (BICM) is a fully implied approach for the estimation 

of the covariance matrix (cf. section 3.2.2). It stipulates a linear relation between the single 

stock dispersion and the systematic market return variance, and imposes an identifying 

restriction about the idiosyncratic variance contribution. While these assumptions allow us to 

build a fully implied covariance matrix, they also bear the risk of introducing structural 

deficiencies in the covariance estimation. In the following, we introduce a model inspired by 

the seminal paper of Ledoit & Wolf (2003) to reduce those deficiencies.
29

  

This model is deduced from a methodology called shrinkage, which is a well-known 

technique in Statistics that dates back to Stein (1956). The idea is to impose some structure 

on the estimator by combining an asymptotically unbiased sample covariance matrix with a 

highly structured estimator
30

 (Stefanovits, 2010, p. 57).
 
The optimal solution should then lie 

somewhere between these two structures (Ledoit, & Wolf, 2003, p. 607). Choosing a proper 

prior estimator is an issue dependent on the estimation problem (Stefanovits, 2010, p. 57). 

Ledoit & Wolf (2003) propose to estimate the covariance matrix of stock returns by an 

optimally weighted average between the sample covariance matrix and a single-index 

(market) model. The sample covariance matrix is defined as 

 

   
 

 
     

 

 
       (3.24) 

 

where                   
 is the matrix of   single return observations     on a universe of 

  stocks,        is the identity matrix, and      is a vector of ones. As the rank of   is 

at most equal to the rank of the matrix   
 

 
    (i.e.    ), it follows that whenever the 

dimension   exceeds    , the sample covariance matrix is rank-deficient and thus not 

invertible (Ledoit & Wolf, 2003, p. 606; Stefanovits, 2010, P. 56). Consequently, a 

shrinkage procedure is used to combine the sample covariance with a structured estimator.  

Once the sample covariance matrix estimator   and the prior estimator   are obtained, they 

are combined such that 

                   (3.25) 

                                                           
29

 However, the idea applied in this paper deviates from the original intention and structure presented by Ledoit 

& Wolf (2003). 
30

 The structured estimator is often referred to in the literature as prior estimator or shrinking target 

(Stefanovits, 2010 , p. 57). 



32 

 

for        . The advantage of this solution is that the prior estimator   has only a small 

number of free parameters and, at the same time, provides decisive structural information 

about the true covariance matrix. This information might otherwise not be captured by the 

sample covariance matrix. The question, however, remains how the shrinkage intensity is 

specified. Ledoit & Wolf (2003) introduce a loss-function that is a quadratic measure of 

distance between the true and the estimated covariance matrices, namely the Frobenius 

norm. Accordingly, the loss function is defined by 

 

               
 

 
  (3.26) 

 

where       is calculated as in formula 3.25,   is the true covariance matrix, and       
  

denotes the Forbenius norm.
31

  

The methodology of Ledoit & Wolf (2003) is fully backward-looking and relies on the 

asymptotical sample properties of the estimator. The purpose of this paper, however, is to 

derive forward-looking information for the application in portfolio selection. Therefore, 

these two approaches pursue different goals and vary largely in purpose. The shrinkage 

methodology of Ledoit & Wolf (2003) was never intended to provide, or even consider, 

forward-looking estimates. However, the concept of using shrinkage to combine two 

estimates with desirable characteristics is very appealing. Even though the sample 

covariance is backward-looking, the historical covariance structure may provide information 

that is otherwise not captured by the fully implied BICM approach. Of course, correlations 

differ and can vary sharply as, for example, in the case of regime switches. However, the 

combination of forward-looking and backward-looking estimates using a quasi-shrinkage 

approach may allow to replicate these changes more efficiently than only relying on one 

estimator.  

While it was argued that the concept of Ledoit & Wolf (2003) is not intended to provide 

forecasting estimates for the covariance matrix, we could theoretically assume that the 

option-implied covariance matrix is a constant that sufficiently describes past correlations. 

The shrinkage intensity could then be derived relatively easily in the context of the model of 
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 The Frobenius norm of the symmetric matrix         with entries               
 is defined by 

 

    
                 

 

 

   

 

   

 

(Ledoit & Wolf, 2003, p. 608). 
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Ledoit & Wolf (2003). However, the covariance would be optimized with respect to past 

observations using forward-looking option data. This is contrary to our initial goal. 

Furthermore, the assumption that the option-implied covariance matrix describes past 

observations is counterintuitive and unrealistic. 

Instead of using the full concept of Ledoit & Wolf (2003), we use only the methodology of 

minimizing the loss function under the Frobenius norm (formula 3.26). Furthermore, we 

introduce a time-varying framework. The loss function is then minimized according to the 

credibility weight   such that 

 

   
        

        
        

   
        

 

 

  (3.27) 

 

where        
   

                      ,   is a point in time, and   is an arbitrary period 

length. Note that this approach is ex post, i.e. the respective quantities to minimize equation 

3.27 are only observable at    . Only the sample covariance matrix can be derived at time 

 . The optimization is therefore simple, but weights are obtained only after the true 

correlation structure, respectively its estimator  , is observed. We therefore need to impose 

structural assumptions about the credibility weights to obtain a priori estimates of the 

covariance matrix. For example, it could be assumed that the previous month credibility 

weight, or the historical average credibility weight obtained from an in-sample-estimation, 

provide a good estimate of next period’s weight. 

 

 

Figure 5 Previous month and rolling window credibility weights of the DJIA index (estimation period: 

October 1997 to January 2012, option expiration: 1 month, interpolation method: smoothing cubic spline,    
     , extrapolation method: Figlewski, direct estimation method, historical observation period: 60 days) 

24-Nov-1997 19-Jul-1999 19-Mar-2001 18-Nov-2002 19-Jul-2004 20-Mar-2006 19-Nov-2007 20-Jul-2009 21-Mar-2011
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
lp

h
a

Optimized Credibility Weights - DJIA

 

 

Previous Month Alpha

Mean Alpha 6 Months



34 

 

Figure 5 shows credibility weights for the previous month and the six month average. As can 

be seen, the previous month credibility weight fluctuates intensely during the whole period 

of estimation, indicating that it may not be an accurate estimator for the next period. The 

mean credibility weight is more stable and lies within an estimation boundary of 0.06 to 

0.38. However, we can observe that the alpha value tends to increase during crisis periods, 

indicating that options may add value to the covariance estimation of these states. Therefore, 

even though the credibility weight is no constant, it may help to improve the estimation of 

the true covariance matrix. Ideally, this approach allows us to profit from the historical 

structure of the sample covariance matrix – including its asymptotical properties – as well as 

to use the structural form and forecasting characteristics of the BICM. In parallel, the quasi-

shrinkage procedure also provides a risk adjustment to the implied covariance matrix. 
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4. Risk Adjustment 

In the previous chapters, several methods have been introduced to derive volatilities and 

covariances from option prices. These implied moments were extracted under the risk-

neutral measure. In classical portfolio theory, however, assets are selected and weighted with 

respect to their physical (real-world) return distribution. While the risk-neutral distribution is 

a powerful tool in asset pricing, it thus has a significant drawback when applied to portfolio 

selection. 

Subsequently, we use two different methodologies to convert risk-neutral implied moments 

and distributions to their physical analogs. The first method imposes several restrictive 

assumptions about the market and the utility function of investors. It uses the estimation of a 

pricing kernel, respectively a risk aversion parameter, to transform the risk-neutral 

distribution to its physical complement. The second method is simpler and uses historical 

estimates of the risk-premia between the risk-neutral and physical moment to adjust the 

derived estimators. 

 

 

4.1. Pricing Kernel Method 

Chapter 2 shows that the implied pdf is only a risk-neutral representation of the physical 

(objective) distribution.
32

 Of course, the risk-neutral and the objective pdf would be identical 

if investors were indifferent to risk. However, in reality, investors have different preferences. 

They value a dollar of consumption more highly in certain states than in others. Thus, the 

risk-neutral pdf does not need to correspond to an investor’s actual expectation about future 

asset price distributions. Risk is therefore reflected by the difference between the risk-neutral 

and the physical probability measure. 

Adjusting the derived moments for risk is a non-trivial task and poses several problems. 

Even though the theoretical relationship between the risk-neutral and the physical probability 

distribution is well-known, identifying the Radon-Nikodym derivative that relates the two 

measures remains cumbersome. 

                                                           
32

 Previously, we named the “true” stock price distribution a physical distribution. However, this is not entirely 

correct and ignores the fact that individuals assess the state probability differently. The subjective probability 

distribution defines an individual’s assessment of how likely a state is to occur (Jackwerth, 2000, p.433). 

However, as we presume that investors are rational, a subjective density forecast should correspond to the 

objective (physical) densities (Bliss & Panigirtzoglou, 2004, p. 408). 
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A key concept in economics is the idea of a state-dependent function that discounts future 

payoffs using time and risk preferences, such that current asset prices are given by 

 

        
            (4.1) 

 

Here      is an asset’s payoff at    ,      is its price,      its pricing kernel
33

, and   
  the 

expectation operator under the objective probability measure at time   (Alonso, Blanco & 

Rubio, 2006, p. 16; Rosenberg & Engle, 2002, p. 343). 

In theory, every asset can be evaluated under the true probability measure if the stochastic 

discount factor is known. However, risk preferences vary not only with respect to future 

states (cf. section 3.1), but also among investors. Thus, we need to introduce a model of the 

economy that enables us to derive the preference structure of a single representative investor. 

Under suitable assumptions about the utility function and endowment shocks, it is known 

that such a representative investor exists in a consumption-based, dynamic, complete, 

frictionless exchange economy (cf. Lucas, 1978; Constantinides, 1982; Aït-Sahalia & Lo, 

2000, p.13). In this context, the pricing kernel is equal to the intertemporal marginal rate of 

substitution of aggregate consumption (Rosenberg & Engle, 2002, p. 344) 

 

     
        

      
  (4.2) 

 

Here      is the representative investor’s utility function (first derivative),   the subjective 

discount factor, and    &      the consumptions at   and    , respectively. As the 

aggregate investor optimally holds the market portfolio in equilibrium, consumption equals 

investment 

 

 
  

     

  
     

  
      

      
            (4.3) 

 

where   is a constant,    the pricing kernel, and   
     and   

     the risk-neutral and the 

physical density, respectively. This is equivalent to Cochrane’s (2005) definition of the 

pricing kernel applied to the model of stocks as in Huang & Litzenberger (1988).
34

 

                                                           
33

 The pricing kernel is also known as stochastic discount factor. 
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Given the utility function and the estimated risk-neutral distribution, formula 4.3 can be 

transformed and normalized to obtain the physical density function 

 

   
      

  
     

        

 
  

    

         
  

 

      
       

  
     

 
      
      

  
      

 

  
     

      

 
  

    

       

  (4.4) 

 

where the constant   disappears. We assume that the representative investor maximizes a 

power utility function 

 

      
        

   
                            (4.5) 

 

where   is a constant measure of risk aversion. The risk-adjusted subjective distribution is 

then stated as 

 

    
    

 
  

       
 

   
        

  (4.6) 

 

The preference parameter   is not known and needs to be optimized. Accordingly, we 

implement an estimation procedure following Bliss & Panigirtzoglou (2004). 

As shown in chapter 2, the risk-neutral probability density function can be derived from 

traded options.
35

 Once the implied risk-neutral pdfs are obtained, we test the hypothesis that 

the estimated risk-adjusted subjective distribution    
    

    is equal to the true pdf denoted by 

  
    . In reality, neither the true nor the risk-adjusted pdfs can be observed and the equation 

cannot be solved directly for  . As the option-implied distribution is forward-looking, 

however, the stock price    at expiry can be compared to the implied forecast for several 

observed option-expiry-date-pairs.  

                                                                                                                                                                                   
34

 The pricing kernel can also be interpreted as an orthogonal projection of the stochastic discount factor in the 

consumption model (Alonso, Blanco & Rubio, 2006, p. 16). 
35

 Subsequently, we use the procedure of Figlewski (2010; cf. section 3.1.2) to extrapolate the density function. 

However, instead of using a fourth order polynomial, we apply a smoothing spline interpolation. 
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The null hypothesis states that the realizations    are independent and distributed according 

to the estimated risk-adjusted pdf, i.e.    
    

      
    . If the null hypothesis can be 

verified, the inverse probability transformation of the realizations 

 

        
    

     
  

 

 (4.7) 

 

thus yields independently and uniformly distributed numbers                 (Bliss & 

Panigirtzoglou, 2004, p. 417). Note that the    are only uniformly distributed if the estimated 

risk-adjusted pdf equals the true pdf (Bliss & Panigirtzoglou, 2004, p. 417).
36,37

 

To jointly test uniformity and independence of the inverse probability transformed data, we 

use the parametric methodology proposed by Berkowitz (2001). For the implementation of 

this methodology, a further transformation of the inverse probability    is defined as 

 

                    
    

     

  

  

   (4.8) 

 

where     is the inverse of the standard normal cumulative density function. Under the null 

hypothesis that    
    

      
    , the transformed parameter    is standard normally 

distributed                  To test for independence and standard normality of   , 

Berkowitz (2001) proposes optimizing the following autoregressive model of first order 

 

                    (4.9) 

 

using maximum likelihood estimation (MLE). The restrictions are then applied to a 

likelihood ratio test. Under the null hypothesis of independence and standard normality of   , 

the parameters of the model are    ,             , and    .  

 

                                                           
36

 The independence assumption imposed is established by most distributional tests, even though independence 

cannot always be verified in practice. 
37

 The range of the transformed data is guaranteed by the inverse transformation itself (Bliss & Panigirtzoglou, 

2004, p. 417). 
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The log-likelihood function           of the autoregressive model in formula 4.9 

(Hamilton, 1994, p. 119) is given by  

 

           
 

 
        

 

 
               

               

          

                                  

   
            

 

   
 

 

   

  

(4.10) 

 

Accordingly, the likelihood ratio statistic                               is distributed 

      and                                 is distributed       under the null 

hypothesis. Failure to reject the     and    is consistent with forecasting capability.
38

 

Consequently, when we fail to reject    , the risk aversion parameter   is obtained by 

maximizing the  -value of the Berkowitz     statistic (minimizing the    of the     

function). This equals the maximization of the risk-adjusted distribution’s forecasting ability. 

For the derivation of  , options on the S&P 100 index from January 1996 to January 2012 

(monthly maturities) are considered. The risk-neutral distributions are obtained using a non-

parametric smoothing spline methodology in combination with the tail-fitting method of 

Figlewski (2010; cf. chapter 2). The implied risk-neutral distributions are then transformed 

through the normalization in formula 4.4. We thereby restrict the set of admissible   values 

to                        and find the   parameter within this range by maximizing the 

Berkowitz     statistic. Over the period from January 1996 through January 2012, the 

average   parameter that maximizes the Berkowitz statistic was found to be 5.2 and 5.5 for 

the DJIA and S&P 100, respectively. Bliss & Panigirtzoglou (2004), in comparison, report a 

  of 4.08 for the S&P 500 in case of a power utility function over a four-week forecasting 

horizon.
39

 The S&P 500 is closely related to the S&P 100 index considered in this thesis and 

thus our results can be regarded as consistent with the outcome of Bliss & Panigirtzoglou 

(2004). 

Table 1 shows the  -values for DJIA and S&P 100 index options and different maturities 

(with the   -values in parentheses revealing significance of rejecting standard normality). 

The  -values are clearly decreasing with longer time-to-maturities, indicating that investors 

                                                           
38

 However, failure to reject the null hypothesis is no guarantee for the null hypothesis to be true. 
39

 Bliss & Panigirtzoglou (2004) analyze options on the S&P 500 and the FTSE 100 for the period from 

February 1983 to June 2001 and June 1992 to March 2001, respectively. 
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are less risk-averse for longer forecasting periods. The respective  -values for the 30-day-to-

expiration-options thereby lie between 0.60 and 0.80, not rejecting the likelihood-ratio test. 

However, it can be observed that the     statistic markedly increases to significant   -

values so that the assumption of standard normality is more likely to be rejected. 

 

 

 

Figure 6 shows the risk-neutral and the risk-adjusted distribution of the DIJA on June 20, 

2011. The risk-neutral distribution is transformed using formula 4.6 and the estimated   

value. The implied stock price variance can now be obtained by using the indirect 

methodology of chapter 3.1.2. If the previously stated model assumptions hold and the 

power utility function accurately reflects the true utility function, the risk-adjusted moments 

converge to the true physical moments. 

 

 

Figure 6 Comparison of risk-adjusted and unadjusted option-implied density functions of the DJIA 

index (index value is divided by 100, date of estimation: June 20, 2011, option expiration: 1 month, 

interpolation method: smoothing cubic spline,        , extrapolation method: Figlewski,      )  

 

30 Days 60 Days 90 Days

DJIA Index 5.2 3.0 3.1

(1.795) (4.313) (9.220)

S&P 100 Index 5.5 2.7 2.3

(1.011) (5.415) (12.206)

Table 1

Estimation of Risk-Aversion Parameter Gamma

Table 1 shows the results of different gamma estimations using maximum likelihood estimation (MLE) and a

Figlewski smoothed interpolation. The results are presented for the Dow Jones Industrial Average (DJIA) and the

S&P 100 index. The gammas are derived using the risk neutral densities (RND) of 30, 60, and 90-days-to-maturity-

options. The values in parentheses depict the likelihood ratio test statistics with 3 degrees of freedom. The

respective chi-squared values for the 1%, 5%, and 10% level of signficance are 11.34, 7.82 and 6.25. The period

under study for the DJIA is from October 1997 to January 2012 and for the S&P 100 from January 1996 to

January 2012.
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At the beginning of this section, we introduced the idea of a representative investor. While 

this assumption allows us to derive the pricing kernel for the market portfolio, it cannot 

easily be transferred to the case of single stocks. As the representative investor holds the 

market portfolio in equilibrium, the consumption at     can be set equal to the price of the 

market portfolio. However, if the payoff structure of the single assets deviates from the 

index, it is no longer guaranteed that the correct pricing kernel is obtained when formula 4.3 

is applied to an individual stock. Theoretically, the pricing kernel could be estimated through 

the index observations and then transferred to the single asset case. However, we have no 

information which stock realizations correspond to which states. Again, this could be solved 

by assuming a certain dependence structure between the market portfolio and the single 

stock. However, such a structure is not directly observable for future periods. Therefore, 

complex joint density assumptions would need to be imposed. 

To solve this problem, we employ the single index model of Sharpe (1963; cf. formula 3.14, 

section 3.2.2). While the covariance can be easily derived from the relation in equation 3.15, 

the single stock variance is more difficult to obtain, because the variance of the idiosyncratic 

risk is not known under the objective measure  . Therefore, an additional restriction needs to 

be imposed. Assuming that the same proportion    of total variance is systematic under the 

risk-neutral and the objective measure in formula 3.16, finally allows us to derive the single 

stock variance. To do so, we optimize formula 3.18 for the single stock implied variances 

and receive risk-adjusted estimates. As a result, the covariance matrix can be spanned using 

only risk-adjusted moments. For the best of our knowledge this approach presents a novelty 

to option-implied risk adjustment literature and will be tested in chapter 5.3.3. 

 

 

4.2. Difference Method 

When forecasting future states using option-implied information, the risk premium can be of 

critical relevance. Unfortunately, this difference between model-free implied and expected 

volatility cannot be observed directly. Instead, Bollerslev, Gibson & Zhu (2004) and Carr & 

Wu (2009) propose using realized in place of expected volatility to estimate the risk 

premium.
40

 

Similar to DeMiguel et al. (2012), we assume that the variance risk premium is reasonably 

approximated by the proportion of estimated model-free implied volatility (MFIV) and 

                                                           
40

 They tested this for the case of high-frequency data. 
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realized volatility (RV). Hereby, the historical volatility risk premium (HVRP) is defined as 

the ratio of average implied and realized volatility over a given period (e.g. monthly) 

 

       
          

   
         

        
   
         

   (4.11) 

 

where   is the horizon over which the volatility is calculated.
41

 As the historical volatility 

risk premium can only be derived when the realized volatility is observed, MFIV is most 

recently calculated for the period from     to  . The parameter   further indicates the 

number of days for which the mean of the volatilities is measured. For example, if   is set 

equal to one year of trading days, the MFIVs and RVs are estimated for every day from 

        to     over a year. 

As the realized volatility is an ex post measure, we cannot derive it for future implied 

volatility estimates. Thus, we assume the historical volatility risk premium to reasonably 

approximate future risk premia. The risk-adjusted implied volatility for period   to     is 

then given by 

 

          
         

     
  (4.12) 

 

In the portfolio optimization problem, we estimate the HVRP using option-implied and 

realized variances for the corresponding forecasting periods. The resulting backward-looking 

estimates are used to adjust the implied moments of subsequent rebalancing periods. 

                                                           
41

 For example, when   equals one month, options with one month to expiration are used to derive the MFIV. 
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5. Empirical Analysis 

5.1. Dataset 

The dataset used in this thesis comprises historical stock and option data. This data is 

obtained from three main sources accessed through Wharton Research Data Services 

(WRDS): 

 

 Ivy DB OptionMetrics 

 Standard & Poor’s Compustat
®
  

 Center for Research in Security Prices (CRSP) 

 

Our sample universe consists of the Dow Jones Industrial Average (DJIA) and the Standard 

& Poor’s 100 index (S&P 100) and their respective constituents. The DJIA is well-suited for 

analysis of option-implied information due to its small constituent universe and the high 

liquidity of its underlying assets. Since option-implied information is very sensitive to data 

quality, these properties are of utmost importance, limiting possible difficulties due to sparse 

option price availability or data perturbations. Further, the DJIA served as benchmark in 

previous studies, which focused on option-implied information in portfolio selection. Using 

the same sample ensures comparability of the results.
42

 

The S&P 100 index is the second sample tested in this thesis. It is also very actively traded, 

yet contains more constituents. Consequently, our option-implied portfolio strategies can be 

tested on a larger universe of assets. Another key advantage is that exchange-listed options 

are guaranteed to exist for S&P 100 constituents, as this is a primary criterion for index 

inclusion. Nevertheless, we consider the DJIA as our main dataset in this thesis. 

Options data for the two indices and their constituents are obtained from OptionMetrics. 

While OptionMetrics provides daily data for options as of January 1996, options on the Dow 

Jones Index were only introduced in October 1997. Accordingly, we chose our sample 

period to last from January 1998 to January 2012. However, moments and measures relying 

on historical return and price information are estimated using earlier stock price 

observations. While these are obtained from the CRSP daily stock price file, data for later 

periods is extracted from OptionMetrics (Security price file). 

                                                           
42

 Therefore, the following sections present the results for the DJIA. The results for the S&P 100 are depicted in 

the appendix and are intended to test for robustness. 
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For the calculation of option-implied densities of the respective market indices, we use the 

Ivy DB Option Price file. This database contains implied volatilities of American and 

European options evaluated by the CRR and the Black-Scholes model, respectively. 

However, to calculate implied moments of single stocks, we use the Volatility Surface file 

provided by OptionMetrics. This file contains the interpolated volatility surface for each 

security using a kernel smoothing algorithm. The strike-price-range of single stock options – 

in contrast to index options – is often very limited, making interpolation particularly 

difficult. A key advantage of the volatility surface dataset, therefore, is the availability of 

implied volatilities for a predefined spectrum of Black-Scholes deltas. The volatility surface 

uses information about all expiration dates and adds additional structure to the implied 

volatilities by providing a fixed but smoothed number of data points. However, this 

intertemporal kernel interpolation is likely to exclude some information inherent in shorter 

maturity options. For single stock options, we thus tested implied volatilities from the Option 

Price and the Volatility Surface file using direct estimation of moments (cf. chapter 3.1.1). 

Even though results are very comparable, those for the volatility surface are more consistent 

due to the broader range of available strike prices.
43

 

However, for risk adjustment using the pricing kernel (chapter 4), we need to derive option-

implied densities from index options. This estimation is critically dependent on the chosen 

interpolation technique and underlying dataset. Yet, compared to single stock options, index 

options provide a broad spectrum of strike-price-option-price-pairs. Accordingly, 

interpolation of the implied volatility curve is even more accurate than the volatility surface 

and thus the Option Price file can be used as data source for index options.
44

 

For the interpolation of index option-implied volatilities, we use a smoothing spline and 

polynomial of fourth order as presented in chapter 2. For the extrapolation of index-implied 

volatilities, we apply the approaches of Shimko and Figlewski, whereas for single stock 

options only the methodology of Shimko is used.
45

 Thereafter, these implied volatilities are 

converted back into option prices using the Black-Scholes formula. Matching spot prices and 

interest rates are obtained as shown below. 

The DJIA and S&P 100 constituents for the period under study are obtained from Compustat 

and add up to a total of 44 and 189 securities, respectively. To derive the corresponding 
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 The estimation of option-implied moments is not substantially affected by the interpolation technique when 

direct estimation is applied. We therefore use the Volatility Surface file for the estimation of single stocks 

moments. 
44

 We apply data filters to the option data ensuring that no option prices are included in the data sample which 

have a bid price equal to zero or moneyness levels below 0.7 or above 1.3. 
45

 A set of 1000 equally spaced strike prices is used to discretize the interpolation region. 
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option prices, CUSIP identifiers are used in the Ivy DB. Unfortunately, Compustat updates 

the CUSIPs after name changes, spin-offs and other company events, whereas OptionMetrics 

uses the original identifiers. This caused several options to be untraceable, and the receptive 

CUSIP numbers had to be replaced manually. While only 3 assets are affected by CUSIP 

changes in the DJIA, a total of 17 securities are identified for the S&P 100. 

Options typically expire on the Saturday following the third Friday of the month. Therefore, 

we chose the portfolio rebalancing dates to match the Monday following the current one-

month-option’s expiration date.
46

 If Monday is a holiday or no data is available, Tuesday is 

chosen as estimation date. This ensures the rebalancing period to be consistent with the 

option expiration dates. In case of longer rebalancing periods, we use the rebalancing dates 

corresponding to the length of the rebalancing interval. This definition of the data sample 

yields a total of 168 observed rebalancing dates for the DJIA and S&P 100 indices.
47

 

In order to calculate Black–Scholes prices, implied densities, and other measures, a proxy 

for the risk-free rate is necessary. This rate must correspond to the respective option maturity 

dates. We use the continuously compounded interest rate curve available in the Zero Curve 

file of OptionMetrics, which is derived from BBA LIBOR rates and settlement prices of 

CME Eurodollar futures (OptionMetrics, 2006). The risk-free rates are then simply 

interpolated with respect to the days to maturity, resulting in the rate corresponding to the 

target time to expiration. 

Unfortunately, no index weights for the S&P 100 index have been made available.
48

 

Accordingly, constituent weights for the S&P 100 index are replicated using the previous 

day market capitalization, divided by the total market capitalization of all S&P100 

constituents. To derive market capitalization, share prices are multiplied by the number of 

shares outstanding. Both data series are available in the OptionMetrics Securities Price file. 

Monthly index weights of the DJIA are provided by Bloomberg. However, because the index 

allocation is available only for specific cutoff dates, we replicate the constituents’ weights. 

These are defined as stock price divided by the sum of constituent prices. The resulting 

index weights are consistent with those published by Bloomberg. 
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 Accordingly, the one month option has no longer a full month to expiration. 
47

 Today, options with rolling expiration dates of one week exist. Yet, options with expiration dates of one and 

two months are traded most frequently. 
48

 These were neither freely available on Bloomberg, DataStream, nor CRSP. 
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5.2. Portfolio Strategies 

In portfolio optimization, an investor is assumed to allocate a fixed initial capital        

to   investment opportunities. Depending on the portfolio strategy pursued, the investment 

in an individual asset might vary. For a certain portfolio  , there exists a vector of portfolio 

weights             given by: 

 

    
  

   
                 (5.1) 

 

The  -th element of the portfolio weights vector   thereby represents the fraction of initial 

capital invested in asset   and the portfolio is specified by the weights vector     . To 

build more realistic portfolios and to define boundary conditions for extreme weighting 

schemes, certain portfolio restrictions are typically imposed on the admissible set of 

strategies: 

 

                        

                
         

                            

 

The first set        does not allow any borrowing of additional capital or short selling of 

assets. Portfolio optimization allowing for short selling can lead to extreme allocations, 

where some assets are shorted extensively to finance long positions in other assets. However, 

in reality, short selling is associated with high costs and is subject to several restrictions – 

especially for private investors. Furthermore, these allocations are often driven by data 

estimation errors and thus lead to undesirable risk concentration. Best & Grauer (1991), for 

example, show that even small variations in estimated mean returns can lead to significantly 

different allocations. 

The second set           allows for leverage of size     and thus borrowing of additional 

capital. In the following, this approach is not considered in detail and the use of levareage is 

restricted. 

Lastly, the threshold set            specifies boundary conditions for the asset weights such 

that            for        . Some portfolio optimization strategies, like the 

minimum-variance optimization, tend to cluster positions by allocating capital to only few 
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assets. However, this is an undesirable outcome and leads to risk concentration, most likely 

due to estimation errors. 

Given this admissible set of portfolio weights, a portfolio strategy or optimization aims at 

formulating a criterion such that the optimal strategy      can be achieved (Stefanovits, 

2010, p. 38). In the following, different portfolio strategies are presented and applied to 

historical and option-implied moments. 

 

5.2.1. Equally Weighted 

A very simple and heuristic approach is the so-called equally weighted portfolio, where asset 

weights are defined by 

    
 

 
 (5.2) 

 

for the set       . In each period, the initial capital is equally invested across all available 

assets. Even though this procedure does not rely on any optimization and ignores individual 

assets’ risk differences, it exhibits good performance in reality (DeMiguel et al., 2012, p. 12; 

cf. Jacobs, Muller & Weber, 2010; DeMiguel, Gralappi  & Uppal, 2009). 

 

5.2.2. Minimum-Variance 

Another methodology frequently used in practice is the minimum-variance portfolio. The 

minimum-variance optimization problem is stated as 

 

           
   

       (5.3) 

 

where         is the estimate of the covariance matrix. This portfolio appears to be more 

robust than a mean-variance optimized portfolio, since expected returns do not appear in the 

formula and thus do not need to be estimated. Since we assume the global mean to be equal 

among all stocks, the mean-variance reduces to a minimum-variance strategy. 

For this optimization the set        is considered, subject to       and     . 

Jagannathan & Ma (2003) show that this can lead to a better performance of the portfolio 

out-of-sample. However, we also analyze portfolio performance for            and define   
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and   to be equal to 0% and 20%, respectively. This is to ensure proper diversification by 

constraining the portfolio to contain at least 5 assets. 

In section 3.2.2, we introduced a methodology for combining option-implied with historical 

covariance estimates, inspired by the seminal paper of Ledoit & Wolf (2003). Ledoit & 

Wolf’s intention, however, is to provide a method combining the asymptotically unbiased 

sample covariance estimator with a highly structured estimator. This is to avoid the sample 

covariance matrix leading to a singular matrix if the number of instruments is bigger than the 

number of observations. When a large universe of financial instruments is considered, this 

can pose a significant challenge in portfolio optimization. Therefore, the procedure of Ledoit 

& Wolf (2003) supports extraction of valid covariance estimates and we use a constant 

correlation model as a prior to obtain more robust covariances.
49

 

 

5.2.3. Equal Risk Contribution 

The equal risk contribution (ERC) strategy relies on the principle of risk diversification, 

specifying that each instrument in a portfolio contributes equally to total portfolio risk.
50

 The 

risk contribution of an asset is thus defined as the share it contributes to total risk, and 

calculated as the product of weight and marginal risk contribution. The latter is the change of 

total portfolio risk induced by an infinitesimal increase in an individual security’s weight 

(Maillard, Roncalli, Teiletche, 2009, p. 3). ERC portfolios are suitable for option-implied 

information analysis because they mimic the diversification effect of equally-weighted 

portfolios, but also incorporate the joint risk contributions of single assets (Maillard, 

Roncalli, Teiletche, 2009, p. 3). As previously noted, options provide no information about 

mean returns. Thus, portfolio optimization strategies excluding expected mean returns are 

more adequate for the performance analysis of option-implied information. Furthermore, 

these strategies are considered to be more robust, since expected mean returns can change 

portfolio construction significantly, even in case of minor estimation errors (Maillard, 

Roncalli & Teiletche, 2009). 

When volatility is used as risk measure, the marginal contribution to risk is specified by 

 

 
     

   
 

    
           

    
  (5.4) 
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 For the calculation of this approach, the Matlab algorithm published on the web site of Ledoit (2013) was 

used. 
50

 Due to this property, ERC portfolios are also known as Risk Parity or Risk Budgeting portfolios. 
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for             and           . Thus, the ERC strategy        is formulated as 

                               
         for all     (Stefanovits, 2010, p. 41). 

Unfortunately, there is no closed-form solution for the ERC portfolio and the following 

optimization problem needs to be solved using a sequential quadratic programming 

algorithm 

 
              

                                          
       

(5.5a) 

where 

                         
 

 

   

 

 

   

                      (5.5b) 

 

No short selling is allowed in this context (    fixed) and the ERC portfolio is ensured 

only if         holds (Maillard, Roncalli, Teiletche, 2009, p. 7). 

 

 

5.3. Empirical Results 

5.3.1. Validation of Forecasting Power 

This chapter compares different methods of extracting option-implied information in a 

portfolio optimization context. First, however, we need to analyze the forecasting power of 

this option-implied information. Consequently, realized volatilities and means of different 

option-implied portfolios are compared intra-period. The realized volatility is thereby 

calculated as the standard deviation of a portfolio’s daily return observations within a 

particular rebalancing period. If these volatilities are averaged over the estimation period, 

they can be compared to those of the benchmark portfolios. 

Nine different portfolio strategies are tested in total, where the historical covariance (HC), 

the covariance estimation of Ledoit & Wolf (LW), and the equally weighted portfolio (EW) 

serve as benchmark strategies. To estimate the underlying historical moments we consider 

returns for a period of 60 and 250 trading days for the DJIA and S&P 100, respectively.
51

 

For the option-implied portfolios, we consider six different estimates of the covariance 

matrix. These are a mixed implied covariance model with previous month alpha (MICM), a 

                                                           
51

 Due to the large universe of the S&P 100, shorter observation periods would surely lead to rank-deficient 

covariances. 
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MICM model with six month moving average alpha (MICMm), and an implied variance 

model with historical correlation (IVH; cf. formula 3.13). Further, we consider the AHCM 

and the BICM models presented in chapters 3.2.1 and 3.2.2, respectively. Finally, the BICM 

model extended by the beta-estimate of Chang et al. (2009) is analyzed (BICM Adj., cf. 

chapter 3.2.2). 

The following sections focus on the Dow Jones Industrial Average (DJIA) dataset. Since the 

results for the S&P 100 are similar to those of the DJIA, they are presented in the appendix. 

Accordingly, the tables for the respective S&P 100 results are indicated in parentheses. 

Table 2 (table A1) shows average mean, average realized volatility, and average Sharpe ratio 

(SR) for three different portfolio strategies. In panel A, these estimators are analyzed with 

respect to the Equal Risk Contribution (ERC) strategy; panel B shows the minimum-

variance optimization with short selling restrictions; and panel C reveals the results for the 

minimum-variance strategy with threshold boundaries (           ; see chapter 

5.2.2). Every panel is split into three different forecasting periods, indicating the time-to-

maturity of the options used to derive the implied moments. 

It should be noted that the portfolio rebalancing period is independent of the forecasting 

period and set equal to one month. Although different rebalancing periods of three and six 

months have been tested, these did not result in significantly different estimations. 

 

In the following, we compare implied and realized variances and covariances in an intra-

rebalancing-period setting, and analyze whether option-implied portfolios outperform  

historical moment portfolios within two subsequent rebalancing periods (on a daily basis). 

Clearly, significant differences in return or volatility terms would be a strong indication for 

the forecasting power of option-inherent information. However, the results of this 

preliminary analysis are expected to be constrained in certain aspects. First, a small number 

of securities already leads to good portfolio diversification. Therefore, the hypothesis at hand 

can only be fully tested in an unrestricted short selling environment. This allows the best-

fitting stock contributing much stronger to the portfolio performance, however, makes 

portfolio allocation very unstable. Nevertheless, this case will be considered in the 

following.
52

 Second, analysis of daily returns is not very appealing when monthly or even 

quarterly rebalancing frequencies and portfolio optimization periods are analyzed. Therefore, 

we also test whether the informational content of option-implied moments emerges solely 

                                                           
52

 However, it will only be tested to proof the informational content of option-inherent information. It will not 

be considered as valuable portfolio strategy in the asset allocation environment of section 5.2.2 and 5.2.3. 
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Mean Std SR Mean Std SR Mean Std SR
1 -1 1 1 -1 1 1 -1 1

Historical Covariance (HC) -2.9% 16.4% -0.18 -2.9% 16.4% -0.18 -2.9% 16.4% -0.18 

Equally Weighted (EW) -3.8% 18.5% -0.20 -3.8% 18.5% -0.20 -3.8% 18.5% -0.20 

(0.676) (0.964) (0.634) (0.676) (0.964) (0.634) (0.676) (0.964) (0.634)

Ledoit & Wolf Model (LW) -2.6% 16.7% -0.15 -2.6% 16.7% -0.15 -2.6% 16.7% -0.15 

(0.427) (0.613) (0.383) (0.427) (0.613) (0.383) (0.427) (0.613) (0.383)

(0.266) (0.063) (0.262) (0.266) (0.063) (0.262) (0.266) (0.063) (0.262)

Mixed Model (MICM) -2.6% 16.6% -0.16 -2.5% 16.6% -0.15 -2.5% 16.6% -0.15 

(0.440) (0.569) (0.406) (0.417) (0.572) (0.374) (0.417) (0.571) (0.374)

(0.275) (0.051) (0.281) (0.257) (0.052) (0.254) (0.257) (0.052) (0.254)

Mixed Model Mean Alpha -2.6% 16.6% -0.16 -2.6% 16.6% -0.15 -2.6% 16.6% -0.16 

(MICMm) (0.436) (0.579) (0.400) (0.425) (0.581) (0.384) (0.428) (0.581) (0.389)

(0.273) (0.053) (0.276) (0.264) (0.054) (0.262) (0.267) (0.054) (0.267)

Implied Variance (IVH) -2.3% 15.6% -0.15 -2.0% 15.6% -0.13 -2.1% 15.6% -0.13 

(0.368) (0.215) (0.357) (0.301) (0.215) (0.264) (0.316) (0.232) (0.282)

(0.217) (0.005) (0.240) (0.170) (0.005) (0.166) (0.181) (0.006) (0.180)

AHCM -2.8% 16.8% -0.17 -2.6% 16.8% -0.15 -2.5% 16.9% -0.15 

(0.484) (0.633) (0.458) (0.424) (0.652) (0.373) (0.407) (0.670) (0.347)

(0.312) (0.071) (0.327) (0.264) (0.077) (0.253) (0.251) (0.085) (0.232)

BICM -2.6% 17.1% -0.15 -2.4% 17.1% -0.14 -2.4% 17.2% -0.14 

(0.430) (0.741) (0.368) (0.390) (0.747) (0.315) (0.399) (0.757) (0.325)

(0.270) (0.116) (0.249) (0.238) (0.120) (0.205) (0.246) (0.128) (0.213)

BICM Adjusted -2.4% 17.4% -0.14 -2.7% 17.4% -0.15 -2.8% 17.3% -0.16 

(0.392) (0.806) (0.309) (0.450) (0.821) (0.380) (0.468) (0.799) (0.408)

(0.241) (0.161) (0.201) (0.287) (0.183) (0.259) (0.301) (0.159) (0.283)

30 Days 60 Days 90 Days

Panel A: Equal Risk Contribution (ERC)

Table 2

Forecasting Power of Option-Implied Variances and Covariances ï DJIA Index

Table 2 shows the performance of different portfolio strategies using historical and option implied information.

The results are presented for the Dow Jones Industrial Average (DJIA) index. Panel A, B, and C show the results

using the equal risk contribution (ERC), the minimum variance without short selling, and the minimum variance

with threshold optimization. The results of the option implied strategies are generally compared to the ones using

historical moment estimations. The moments of the option implied strategies are derived from 30, 60, and 90 days-

to-maturity options. The performance measures depicted are the sample average of the observed monthly means,

the average of the observed monthly standard deviations (Std), and the average of the observed monthly Sharpe

ratios (SR). All terms are anuualized. The values in parentheses depict the p-values of a one-sided t-test for higher

mean, lower standard deviation, and higher Sharpe ratio in comparison to the HC and the EW strategy. The period

under study is from December 1997 to January 2012, applying a monthly rebalancing approach.

for longer return observation intervals. This will be tested in the second part of the analysis 

(cf. chapter 5.3.2). Finally, good market environments are usually assumed to show lower 

volatilities and a smoothed development. Negative market environments, on the other hand, 

are typically marked by sharp spikes and higher volatilities. With this in mind, the analyzed 

option maturities of 30, 60, and 90 days cover a very short period and are possibly better-

suited to predict statistical moments of bad markets rather than good ones. With respect to 

this assumption, good market states make up for a large share of an observed period, and 

possibly cover crisis-period-effects.
53

 To account for this problem, crisis and non-crisis 

periods will be analyzed independently at the end of this section. 
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 Clearly, this also depends on the starting point and length of the observation period. 
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Mean Std SR Mean Std SR Mean Std SR

Historical Covariance (HC) -2.3% 14.2% -0.16 -2.3% 14.2% -0.16 -2.3% 14.2% -0.16 

Equally Weighted (EW) -3.8% 18.5% -0.20 -3.8% 18.5% -0.20 -3.8% 18.5% -0.20 

(0.799) (1.000) (0.715) (0.799) (1.000) (0.715) (0.799) (1.000) (0.715)

Ledoit & Wolf Model (LW) -1.1% 13.9% -0.08 -1.1% 13.9% -0.08 -1.1% 13.9% -0.08 

(0.223) (0.376) (0.149) (0.223) (0.376) (0.149) (0.223) (0.376) (0.149)

(0.067) (0.000) (0.055) (0.067) (0.000) (0.055) (0.067) (0.000) (0.055)

Mixed Model (MICM) -0.5% 13.8% -0.04 -0.5% 13.9% -0.03 -1.2% 13.9% -0.09 

(0.121) (0.318) (0.054) (0.120) (0.347) (0.052) (0.247) (0.367) (0.176)

(0.032) (0.000) (0.015) (0.032) (0.000) (0.014) (0.076) (0.000) (0.068)

Mixed Model Mean Alpha -0.9% 13.7% -0.07 -1.1% 13.8% -0.08 -1.3% 13.8% -0.10 

(MICMm) (0.186) (0.291) (0.114) (0.213) (0.319) (0.141) (0.271) (0.334) (0.208)

(0.054) (0.000) (0.039) (0.063) (0.000) (0.051) (0.086) (0.000) (0.084)

Implied Variance (IVH) 0.5% 13.9% 0.04 0.6% 13.8% 0.04 -0.4% 13.8% -0.03 

(0.034) (0.371) (0.005) (0.031) (0.316) (0.004) (0.104) (0.306) (0.041)

(0.008) (0.000) (0.001) (0.007) (0.000) (0.001) (0.027) (0.000) (0.011)

AHCM 0.0% 14.5% -0.00 0.1% 14.2% 0.01 -0.2% 14.2% -0.01 

(0.077) (0.613) (0.022) (0.062) (0.477) (0.015) (0.087) (0.483) (0.028)

(0.020) (0.000) (0.005) (0.016) (0.000) (0.003) (0.023) (0.000) (0.007)

BICM -0.7% 14.1% -0.05 0.8% 14.1% 0.06 0.3% 14.0% 0.02

(0.151) (0.440) (0.075) (0.022) (0.441) (0.002) (0.049) (0.390) (0.010)

(0.042) (0.000) (0.023) (0.005) (0.000) (0.000) (0.012) (0.000) (0.002)

BICM Adjusted 3.4% 14.7% 0.23 1.1% 14.4% 0.07 -0.5% 14.4% -0.03 

(0.000) (0.695) (0.000) (0.017) (0.575) (0.001) (0.125) (0.587) (0.051)

(0.000) (0.000) (0.000) (0.004) (0.000) (0.000) (0.034) (0.000) (0.014)

Mean Std SR Mean Std SR Mean Std SR

Historical Covariance (HC) -2.3% 14.1% -0.16 -2.3% 14.1% -0.16 -2.3% 14.1% -0.16 

Equally Weighted (EW) -3.8% 18.5% -0.20 -3.8% 18.5% -0.20 -3.8% 18.5% -0.20 

(0.799) (1.000) (0.709) (0.799) (1.000) (0.709) (0.799) (1.000) (0.709)

Ledoit & Wolf Model (LW) -1.1% 13.9% -0.08 -1.1% 13.9% -0.08 -1.1% 13.9% -0.08 

(0.224) (0.384) (0.150) (0.224) (0.384) (0.150) (0.224) (0.384) (0.150)

(0.068) (0.000) (0.057) (0.068) (0.000) (0.057) (0.068) (0.000) (0.057)

Mixed Model (MICM) -1.0% 13.9% -0.07 -0.8% 13.9% -0.06 -1.1% 13.9% -0.08 

(0.203) (0.368) (0.128) (0.166) (0.375) (0.091) (0.228) (0.383) (0.154)

(0.061) (0.000) (0.046) (0.048) (0.000) (0.030) (0.070) (0.000) (0.059)

Mixed Model Mean Alpha -1.6% 13.8% -0.12 -1.4% 13.8% -0.10 -1.6% 13.8% -0.11 

(MICMm) (0.336) (0.336) (0.291) (0.282) (0.346) (0.221) (0.323) (0.356) (0.273)

(0.114) (0.000) (0.136) (0.091) (0.000) (0.094) (0.109) (0.000) (0.125)

Implied Variance (IVH) -1.6% 13.9% -0.11 -1.3% 13.8% -0.09 -1.8% 13.8% -0.13 

(0.315) (0.377) (0.260) (0.255) (0.338) (0.188) (0.377) (0.340) (0.347)

(0.105) (0.000) (0.117) (0.080) (0.000) (0.076) (0.133) (0.000) (0.173)

AHCM -1.5% 14.3% -0.10 -0.5% 13.9% -0.04 -0.9% 14.1% -0.07 

(0.298) (0.574) (0.222) (0.121) (0.406) (0.052) (0.187) (0.465) (0.107)

(0.099) (0.000) (0.095) (0.033) (0.000) (0.015) (0.055) (0.000) (0.037)

BICM -1.1% 14.0% -0.08 0.6% 13.9% 0.04 -0.2% 13.9% -0.01 

(0.214) (0.434) (0.136) (0.032) (0.373) (0.005) (0.085) (0.385) (0.028)

(0.065) (0.000) (0.050) (0.008) (0.000) (0.001) (0.022) (0.000) (0.007)

BICM Adjusted 2.5% 14.7% 0.17 0.1% 14.6% 0.01 -1.1% 14.6% -0.08 

(0.001) (0.738) (0.000) (0.064) (0.693) (0.015) (0.233) (0.691) (0.141)

(0.000) (0.000) (0.000) (0.016) (0.000) (0.003) (0.073) (0.000) (0.053)

Table 2 (cont.)

Panel C: Minimum-Variance With Threshold Weights

30 Days 60 Days 90 Days

Panel B: Minimum-Variance Without Short Selling

30 Days 60 Days 90 Days
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Panel A in table 2 (table A1) reveals the results for the ERC optimization for different time-

to-maturities. It is apparent that no option-implied strategy provides significantly different 

standard deviations or means than the historical covariance (HC) methodology. This 

indicates a potentially limited contribution of option-implied covariance estimates to ERC 

optimized portfolios. Mean and standard deviation terms turn out comparably when longer 

option maturities of 60 and 90 days are considered. The relationship between time-to-

maturity and option forecasting horizon is therefore limited. However, the MICM, the 

MICMm, the IVH, and the AHCM show significantly lower standard deviations compared 

to the EW benchmark portfolio (in the S&P 100 data sample this is true for all option-

implied strategies). Clearly, this is due to the more efficient allocation of these strategies. 

However, the same pattern can also be observed between the EW and the HC portfolio. 

While the ERC is a valuable strategy in the context of portfolio selection – as presented in 

the next chapter – the actual forecasting power of option-implied information is best tested 

within a minimum-variance optimization context. Here we apply the sets        and 

          , respectively. As already mentioned, these restrictions will be relaxed later on. 

Panel B further indicates for        that – by using option-implied models – no significant 

reduction in standard deviation compared to HC can be achieved within the rebalancing 

period. This is due to the already good diversification provided by a portfolio of 30 assets. 

Using a different estimator for the minimum-variance portfolio calculation thus only 

marginally decreases portfolio volatility, even in case it has superior forecasting ability.
54

 As 

a consequence, the option-implied portfolio strategies’ variances can only be reduced to a 

limited extent, despite potential information about future volatility. However, we observe 

significantly higher means for the IVH, the AHCM, and the BICM Adjusted portfolio as 

opposed to the HC portfolio (for the short-term expiration case; in the S&P 100 data sample 

this is also true for the BICM). This is a first favorable indication for option-implied 

information adding value to portfolio selection. As there is already good diversification, 

option-implied moments result in only marginally lower portfolio volatilities, but mostly 

higher mean returns. These results are also confirmed by significantly higher Sharpe ratios 

for the BICM Adjusted strategy.
55

 Thus, the higher mean returns are not only a 

compensation for higher risk-taking. 

                                                           
54

 One possibility to circumvent this problem is to allow for short positions. This will be presented in the 

following section. 
55

 Note that Sharpe ratios (SR) cannot be interpreted properly for negative values. In case benchmark SRs turn 

out negative and option-implied SRs positive, we also test for significant difference between option-implied 

SRs and zero. In many cases, results are similar to the analysis using negative benchmark SRs. 
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To test robustness of our results, we also optimize the portfolio under threshold restrictions 

(panel C). It was shown in previous empirical studies that a portfolio optimized with respect 

to historical covariances performs better when extreme positions are restricted. Even though 

this is a goal we strive for, it can possibly reduce the power of option-inherent information. 

However, the overall results are similar to the minimum-variance portfolio with short selling 

restrictions, and in comparison to       , only the BICM Adjusted portfolio shows 

significantly higher returns and Sharpe ratios than the HC portfolio (in the 30-days-to-

expiration-interval).
56

 These results are revealed in panel C of table 2 (table A1). One 

interesting observation is the significant outperformance of the BICM Adjusted method in 

terms of mean ( -value of 0.001) and Sharpe ratio
57

. At the same time, its standard deviation 

does not significantly deviate from the benchmark methodology HC. In addition to a limited 

reduction in overall portfolio variance, this outperformance is attributable to the skewness 

term in the BICM Adjusted covariance estimate. By considering downturn events in 

estimation of beta, this approach implicitly gives more weight to less negatively skewed 

stocks (relatively to skewness of the market portfolio). Consequently, the minimum-variance 

optimization causes the portfolio to overweight stocks with higher relative skewness. 

This is not the case for the S&P 100 sample and is most likely due to the application of the 

spectral decomposition (cf. appendix D) to guarantee positive-definite covariances. The 

problem of negative covariance eigenvalues was severe for the BICM Adjusted and required 

the application of this technique. However, this correction reduces its informational content 

in certain aspects. The BICM Adjusted results for the S&P 100 are therefore only partially 

comparable to those for the DJIA. 

 

The results presented so far indicate that we possibly set too restrictive weighting conditions. 

As previously mentioned, historical moment portfolios are assumed to be already properly 

diversified. This is why the additional option-implied information may only contribute in a 

limited way when we apply those constraints. Table 3 reveals the results for the case of a 

minimum-variance portfolio without any weight restrictions.
58

 Clearly, this is no desirable 

choice, since the portfolio positions are highly skewed and huge leverage is inherent. 

Nevertheless, the results confirm the forecasting power and the quality of option-implied 

information. The standard deviations are in general significantly lower, and the returns 

                                                           
56

 In general, the minimum-variance optimization without short selling and with threshold weights behave quite 

similar, which is why for the S&P 100 case the BICM shows again significant differences. 
57

 The Sharpe ratio is also tested to be significantly different from zero at the 1% level (cf. footnote 55). 
58

 This analysis is not applied to the S&P 100 index due to its larger sample size, causing unrealistic and 

extreme portfolio allocations and corresponding returns. 
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significantly higher than those of the HC and EW benchmark portfolios. This is over and 

above the fact that the historical variance approach is also allowed unlimited leverage and 

confirms that forecasting power of options can be appropriately used in this context. 

However, we find that, this pattern decreases with longer expiration periods which is due to 

decreasing certainty of the forecast. 

These results give a clear indication that option-implied information adds forecasting value 

to a portfolio, but that the previously analyzed optimization strategies are too restrictive. 

Nevertheless, an unconstrained minimum-variance strategy is not feasible in practice. 

 

 

 

 

Mean Std SR Mean Std SR Mean Std SR
1 -1 1

Historical Covariance (HC) 2.8% 17.8% 0.16 2.8% 17.8% 0.16 2.8% 17.8% 0.16

Equally Weighted (EW) -3.8% 18.5% -0.20 -3.8% 18.5% -0.20 -3.8% 18.5% -0.20

(1.000) (0.750) (1.000) (0.000) (0.250) (1.000) (0.000) (0.250) (1.000)

Ledoit & Wolf Model (LW) 2.7% 14.0% 0.19 2.7% 14.0% 0.19 2.7% 14.0% 0.19

(0.537) (0.000) (0.343) (0.463) (0.000) (0.343) (0.463) (0.000) (0.343)

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Mixed Model (MICM) 3.6% 19.2% 0.19 4.3% 16.5% 0.26 4.2% 16.5% 0.25

(0.356) (0.706) (0.366) (0.221) (0.097) (0.099) (0.238) (0.092) (0.114)

(0.000) (0.598) (0.000) (0.000) (0.035) (0.000) (0.000) (0.032) (0.000)

Mixed Model Mean Alpha 5.8% 16.0% 0.36 3.2% 15.8% 0.20 3.2% 15.6% 0.21

(MICMm) (0.054) (0.081) (0.004) (0.421) (0.026) (0.292) (0.420) (0.011) (0.280)

(0.000) (0.033) (0.000) (0.000) (0.009) (0.000) (0.000) (0.004) (0.000)

Implied Variance (IVH) -0.2% 16.1% -0.01 0.4% 16.1% 0.03 -0.8% 16.2% -0.05

(0.950) (0.043) (0.987) (0.096) (0.040) (0.957) (0.024) (0.049) (0.997)

(0.029) (0.014) (0.007) (0.013) (0.013) (0.001) (0.060) (0.016) (0.025)

AHCM 0.6% 21.9% 0.03 6.6% 22.6% 0.29 4.1% 24.2% 0.17

(0.847) (0.998) (0.955) (0.045) (0.000) (0.044) (0.296) (0.000) (0.456)

(0.024) (0.985) (0.001) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000)

BICM 3.9% 16.2% 0.24 5.0% 17.8% 0.28 4.9% 18.1% 0.27

(0.285) (0.055) (0.151) (0.136) (0.493) (0.060) (0.153) (0.367) (0.083)

(0.000) (0.019) (0.000) (0.000) (0.247) (0.000) (0.000) (0.352) (0.000)

BICM Adjusted 6.1% 15.9% 0.39 2.2% 16.0% 0.14 4.9% 17.0% 0.29

(0.038) (0.035) (0.002) (0.368) (0.038) (0.607) (0.135) (0.257) (0.047)

(0.000) (0.012) (0.000) (0.001) (0.013) (0.000) (0.000) (0.115) (0.000)

30 Days 60 Days 90 Days

Panel A: Minimum-Variance Unconstrained

Table 3

Forecasting Power of Option-Implied Variances and Covariances ï Unconstrained Case 

Table 3 shows the performance of the unconstrained minimum variance optimization using historical and option

implied information. The results are presented for the Dow Jones Industrial Average (DJIA) index. The results of

the option implied strategies are generally compared to the ones using historical moment estimations. The moments

of the option implied strategies are derived from 30, 60, and 90 days-to-maturity options. The performance

measures depicted are the sample average of the observed monthly means, the average of the observed monthly

standard deviations (Std), and the average of the observed monthly Sharpe ratios (SR). All terms are anuualized.

The values in parentheses depict the p-values of a one-sided t-test for higher mean, lower standard deviation, and

higher Sharpe ratio in comparison to the HC and the EW strategy. The period under study is from December 1997

to January 2012, applying a monthly rebalancing approach.
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While it is shown that the contribution of option-implied information is limited in the 

restricted intra-period optimization case, this might also be due to a badly chosen 

observation window. Therefore, we split the observation periods into positive and negative 

market phases. As mentioned before, transitions from positive to negative market states are 

expected to take effect much faster than vice versa. Option-implied information might thus 

also be biased with respect to this property. Accordingly, the MSCI World TR developed 

market index is used to separate crisis from non-crisis periods. In this study, the periods from 

March 2000 to April 2003 and from October 2007 to February 2009 are defined as crisis 

periods (53 observations), whereas January 1998 to March 2000, April 2003 to September 

2007, and March 2009 to January 2012 are specified as non-crisis periods (115 

observations). 

Even though this approach seems reasonable, the results in table 4 (table A2) do not confirm 

our assumptions. Here the crisis and non-crisis periods are reported separately for the two 

optimization strategies ERC and minimum-variance without short selling.
59

 Nevertheless, 

the only strategy that turns out to support the hypothesis at hand is – again – the 

unconstrained minimum-variance portfolio (not reported here). However, a clear dominance 

of the option-inherent information in crisis phases can be observed. This is most marked for 

the unconstrained case, and supports the hypothesis that option-implied information is 

stronger during market downturn than upturn phases. Nevertheless, the results indicate that 

even under the separation of good and bad market phases, portfolios are appropriately 

diversified. Therefore, the option-implied forecasting value – even though observable – can 

only be capitalized under these particularly unrestrictive portfolio assumptions. 

 

We also apply different interpolation and extrapolation techniques for the estimation of the 

implied moments. Specifically, we use the Shimko extrapolation instead of the Figlewski 

method to derive index moments. We further test for cubic splines and a polynomial of 

fourth order instead of the smoothing cubic spline interpolation method. However, results 

turn out very similar. 

                                                           
59

 Due to very similar results for minimum-variance without short selling and with threshold, we omit the 

results for the threshold case at this point. 
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Mean Std SR Mean Std SR Mean Std SR Mean Std SR
1 -1 1 1 -1 1 1 -1 1 1 -1 1

Historical Covariance (HC) 9.1% 13.7% 0.66 -29.0% 22.2% -1.31 5.8% 12.3% 0.47 -19.9% 18.3% -1.09 

Equally Weighted (EW) 9.8% 15.1% 0.65 -33.3% 26.0% -1.28 9.8% 15.1% 0.65 -33.3% 26.0% -1.28 

(0.361) (0.908) (0.561) (0.816) (0.925) (0.446) (0.016) (0.998) (0.038) (0.999) (0.999) (0.866)

Ledoit & Wolf Model (LW) 9.1% 13.9% 0.66 -28.0% 22.8% -1.23 6.3% 12.2% 0.52 -17.2% 17.8% -0.96 

(0.497) (0.572) (0.527) (0.409) (0.601) (0.334) (0.391) (0.406) (0.327) (0.218) (0.406) (0.236)

(0.636) (0.122) (0.466) (0.135) (0.113) (0.384) (0.973) (0.001) (0.897) (0.000) (0.000) (0.044)

Mixed Model (MICM) 9.4% 13.8% 0.68 -28.7% 22.7% -1.27 6.8% 12.0% 0.56 -16.2% 17.6% -0.92 

(0.445) (0.531) (0.443) (0.471) (0.571) (0.417) (0.285) (0.346) (0.185) (0.147) (0.375) (0.164)

(0.589) (0.104) (0.383) (0.168) (0.100) (0.470) (0.953) (0.001) (0.799) (0.000) (0.000) (0.026)

Mixed Model Mean Alpha 9.2% 13.8% 0.67 -28.4% 22.7% -1.25 6.5% 12.0% 0.54 -16.9% 17.5% -0.97 

(MICMm) (0.470) (0.540) (0.480) (0.443) (0.578) (0.384) (0.349) (0.339) (0.255) (0.198) (0.343) (0.246)

(0.612) (0.108) (0.419) (0.153) (0.103) (0.437) (0.967) (0.001) (0.857) (0.000) (0.000) (0.047)

Implied Variance (IVH) 8.7% 13.2% 0.66 -26.3% 20.8% -1.27 7.2% 12.2% 0.59 -14.0% 17.6% -0.80 

(0.585) (0.271) (0.505) (0.260) (0.274) (0.415) (0.194) (0.437) (0.112) (0.048) (0.374) (0.046)

(0.714) (0.028) (0.444) (0.066) (0.021) (0.468) (0.919) (0.002) (0.702) (0.000) (0.000) (0.005)

AHCM 9.4% 14.0% 0.67 -29.3% 22.9% -1.28 8.2% 12.5% 0.66 -18.0% 18.8% -0.95 

(0.445) (0.591) (0.470) (0.529) (0.613) (0.442) (0.075) (0.569) (0.030) (0.296) (0.598) (0.220)

(0.589) (0.131) (0.410) (0.205) (0.125) (0.496) (0.805) (0.005) (0.459) (0.000) (0.003) (0.039)

BICM 9.3% 14.1% 0.66 -28.3% 23.6% -1.20 5.4% 12.5% 0.43 -13.8% 17.6% -0.79 

(0.465) (0.657) (0.525) (0.440) (0.719) (0.284) (0.613) (0.565) (0.668) (0.042) (0.360) (0.041)

(0.606) (0.169) (0.464) (0.155) (0.182) (0.330) (0.992) (0.005) (0.983) (0.000) (0.000) (0.004)

BICM Adjusted 9.0% 14.4% 0.63 -27.3% 23.8% -1.15 9.9% 12.8% 0.77 -10.5% 18.8% -0.56 

(0.512) (0.754) (0.630) (0.350) (0.743) (0.196) (0.008) (0.711) (0.001) (0.005) (0.594) (0.001)

(0.647) (0.243) (0.571) (0.110) (0.202) (0.234) (0.482) (0.009) (0.111) (0.000) (0.002) (0.000)

Table 4

Forecasting Power of Option-Implied Variances and Covariances ï Crisis and Non-Crisis States

Table 4 shows the performance of different portfolio strategies using historical and option implied information. The results are presented for the Dow Jones Industrial Average (DJIA) index. The portfolio

strategies used are the equal risk contribution (ERC) and the minimum variance without short selling optimization. The results of the option implied strategies are generally compared to the ones using

historical moment estimations. The moments of the option implied strategies are derived from 30 days-to-maturity options. The results for good and bad market states are depicted seperately for each

strategy, depicted as non-crisis and crisis states. The performance measures depicted are the sample average of the observed monthly means, the average of the observed monthly standard deviations (Std),

and the average of the observed monthly Sharpe ratios (SR). All terms are anuualized. The values in parentheses depict the p-values of a one-sided t-test for higher mean, lower standard deviation, and

higher Sharpe ratio in comparison to the HC and the EW strategy. The period under study is from December 1997 to January 2012, applying a monthly rebalancing approach.

Non-Crisis States Crisis States

Equal Risk Contribution (ERC) Minimum-Variance Without Short Selling

Non-Crisis States Crisis States
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Even though option-implied moments may not significantly decrease the volatility within a 

rebalancing interval, they can lead to outperformance of the overall portfolio strategy. Thus, 

the use of option-implied information in portfolio optimization cannot be disqualified only 

by potentially limited intra-period forecasting quality.
60

 Since we are mainly interested in the 

contribution and quality of option-implied information to portfolio selection, a longer-term 

observation focus is set out in the next section (using monthly data). This is intended to 

derive the quality of rebalancing strategies relying on option-implied information. As will be 

shown, the quality of a portfolio strategy cannot only be evaluated with respect to 

distributional properties. Measures like average turnover and maximum loss can also 

significantly influence the choice of a portfolio strategy. 

 

5.3.2. Option-Implied Variance and Correlation Portfolios 

After having shown that forward-looking information is inherent in option prices, we 

underpin the assumption of monthly (or more infrequent) rebalancing and observation 

periods. Focus is thus set more on the potential of option-implied information in asset 

allocation and less on its forecasting value emerging intra-period.
61

 

 

Five measures are used in table 5 (table A3) to quantify the performance of the respective 

portfolios. These are mean return, standard deviation, Sharpe ratio (SR), mean turnover 

(MTO), and maximum drawdown (MDD). The  -values in parentheses correspond to one-

sided tests of the null hypothesis; i.e. the standard deviations of option-implied portfolios are 

not lower, and the means not higher than those for the HC and the EW benchmark portfolios. 

Panel A reveals that option-implied portfolio strategies do not significantly deviate in 

standard deviation from the HC portfolio in case ERC optimization is applied. Only when 

compared to the EW benchmark, significantly lower standard deviations can be observed for 

the option-implied portfolios. Hence, option-implied information does not lead to a direct 

outperformance of the ERC optimization strategy when compared to the historically 

estimated benchmark. This is consistent with the results obtained in the previous section. 

 

 

 

                                                           
60

 However, one of the main drawbacks is the complexity of deriving option-implied moments and the cost of 

implementing such strategies. 
61

 In section 5.3.1 this was proved to be existent. 
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Mean Std SR MTO MDD Mean Std SR MTO MDD Mean Std SR MTO MDD

Historical Covariance (HC) 1.8% 18.0% 0.10 15.3% 25.6% 1.8% 18.0% 0.10 15.3% 25.6% 1.8% 18.0% 0.10 15.3% 25.6%

Equally Weighted (EW) 1.9% 20.4% 0.09 5.8% 29.1% 1.9% 20.4% 0.09 5.8% 29.1% 1.9% 20.4% 0.09 5.8% 29.1%

(0.495) (0.944) (0.555) (0.495) (0.944) (0.555) (0.495) (0.944) (0.555)

Ledoit & Wolf Model (LW) 2.2% 18.2% 0.12 11.2% 25.5% 2.2% 18.2% 0.12 11.2% 25.5% 2.2% 18.2% 0.12 11.2% 25.5%

(0.438) (0.553) (0.419) (0.438) (0.553) (0.419) (0.438) (0.553) (0.419)

(0.446) (0.072) (0.365) (0.446) (0.072) (0.365) (0.446) (0.072) (0.365)

Mixed Model (MICM) 2.2% 18.0% 0.12 14.7% 25.4% 2.2% 18.1% 0.12 14.5% 25.5% 2.2% 18.1% 0.12 14.6% 25.5%

(0.427) (0.509) (0.399) (0.435) (0.512) (0.410) (0.436) (0.513) (0.412)

(0.436) (0.058) (0.346) (0.443) (0.059) (0.357) (0.445) (0.060) (0.359)

Mixed Model Mean Alpha 2.2% 18.1% 0.12 11.6% 25.6% 2.2% 18.1% 0.12 11.6% 25.6% 2.1% 18.2% 0.12 11.8% 25.7%

(MICMm) (0.432) (0.526) (0.407) (0.437) (0.538) (0.415) (0.442) (0.542) (0.423)

(0.440) (0.064) (0.354) (0.445) (0.067) (0.362) (0.450) (0.069) (0.369)

Implied Variance (IVH) 2.3% 16.9% 0.13 20.9% 24.2% 2.1% 17.0% 0.13 16.9% 24.8% 2.1% 17.1% 0.12 15.7% 24.7%

(0.413) (0.209) (0.343) (0.440) (0.229) (0.383) (0.452) (0.240) (0.402)

(0.424) (0.008) (0.293) (0.449) (0.010) (0.331) (0.460) (0.011) (0.349)

AHCM 2.1% 18.3% 0.12 15.3% 25.6% 2.1% 18.3% 0.12 10.4% 25.8% 2.0% 18.3% 0.11 9.8% 24.8%

(0.443) (0.584) (0.429) (0.441) (0.590) (0.426) (0.465) (0.590) (0.460)

(0.451) (0.084) (0.375) (0.449) (0.086) (0.372) (0.471) (0.086) (0.405)

BICM 2.4% 18.4% 0.13 9.4% 25.6% 2.3% 18.5% 0.12 7.2% 25.8% 2.3% 18.5% 0.12 6.5% 25.8%

(0.398) (0.617) (0.371) (0.409) (0.638) (0.388) (0.415) (0.647) (0.397)

(0.409) (0.098) (0.319) (0.419) (0.107) (0.336) (0.425) (0.112) (0.345)

BICM Adjusted 2.6% 18.9% 0.14 30.3% 25.9% 2.5% 18.7% 0.13 17.4% 25.7% 2.1% 18.6% 0.11 12.7% 25.8%

(0.350) (0.742) (0.320) (0.375) (0.690) (0.347) (0.458) (0.658) (0.459)

(0.362) (0.173) (0.272) (0.386) (0.137) (0.298) (0.465) (0.118) (0.404)

30 Days 60 Days 90 Days

Panel A: Equal Risk Contribution (ERC)

Table 5

Performance of Option-Implied Portfolios using DJIA Index Constituents

Table 5 shows the performance of different portfolio strategies using historical and option implied information. The results are presented for the Dow Jones Industrial Average (DJIA)

index. Panel A, B, and C show the results using the equal risk contribution (ERC), the minimum variance without short selling, and the minimum variance with threshold optimization.

The results of the option implied strategies are generally compared to the ones using historical moment estimations. The moments of the option implied strategies are derived from

30, 60, and 90 days-to-maturity options. The performance measures depicted are the mean of the mean return, the standard deviation (Std), the Sharpe ratio (SR), the mean portfolio

turnover (MTO), and the maximum portfolio drawdown (MDD). Mean and standard deviation terms are annualized. The values in parentheses depict the p-values of a one-sided t-test

for higher mean, a one-sided F-test for lower standard deviation, and a one-sided test for normality of higher Sharpe ratio in comparison to the HC and the EW strategy. The period

under study is from December 1997 to January 2012, applying a monthly rebalancing approach.
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Mean Std SR MTO MDD Mean Std SR MTO MDD Mean Std SR MTO MDD

Historical Covariance (HC) 1.4% 15.3% 0.09 71.5% 25.3% 1.4% 15.3% 0.09 71.5% 25.3% 1.4% 15.3% 0.09 71.5% 25.3%

Equally Weighted (EW) 1.9% 20.4% 0.09 5.8% 29.1% 1.9% 20.4% 0.09 5.8% 29.1% 1.9% 20.4% 0.09 5.8% 29.1%

(0.414) (1.000) (0.513) (0.414) (1.000) (0.513) (0.414) (1.000) (0.513)

Ledoit & Wolf Model (LW) 2.4% 15.0% 0.16 58.8% 25.2% 2.4% 15.0% 0.16 58.8% 25.2% 2.4% 15.0% 0.16 58.8% 25.2%

(0.275) (0.390) (0.189) (0.275) (0.390) (0.189) (0.275) (0.390) (0.189)

(0.386) (0.000) (0.180) (0.386) (0.000) (0.180) (0.386) (0.000) (0.180)

Mixed Model (MICM) 3.1% 14.4% 0.22 69.6% 23.9% 2.8% 14.7% 0.19 69.6% 24.2% 2.2% 15.0% 0.14 68.3% 25.2%

(0.152) (0.203) (0.057) (0.203) (0.304) (0.106) (0.334) (0.389) (0.262)

(0.259) (0.000) (0.053) (0.314) (0.000) (0.100) (0.442) (0.000) (0.251)

Mixed Model Mean Alpha 2.3% 14.4% 0.16 63.2% 25.2% 2.1% 14.7% 0.14 62.2% 25.4% 1.8% 14.8% 0.12 62.1% 25.7%

(MICMm) (0.290) (0.215) (0.189) (0.347) (0.286) (0.267) (0.413) (0.327) (0.360)

(0.403) (0.000) (0.180) (0.456) (0.000) (0.257) (0.487) (0.000) (0.348)

Implied Variance (IVH) 3.7% 14.3% 0.26 84.1% 24.6% 3.2% 14.4% 0.22 71.6% 25.4% 2.3% 14.6% 0.16 65.2% 25.3%

(0.082) (0.189) (0.017) (0.147) (0.222) (0.055) (0.303) (0.255) (0.209)

(0.171) (0.000) (0.016) (0.254) (0.000) (0.051) (0.415) (0.000) (0.200)

AHCM 2.6% 15.0% 0.18 90.6% 25.4% 2.4% 14.7% 0.16 75.9% 25.8% 2.0% 14.9% 0.13 69.3% 26.2%

(0.235) (0.379) (0.144) (0.290) (0.297) (0.198) (0.368) (0.372) (0.304)

(0.347) (0.000) (0.137) (0.402) (0.000) (0.189) (0.473) (0.000) (0.292)

BICM 2.1% 14.4% 0.15 74.6% 25.1% 2.6% 14.1% 0.18 60.0% 26.0% 2.3% 14.4% 0.16 52.3% 26.2%

(0.343) (0.209) (0.252) (0.242) (0.152) (0.128) (0.304) (0.200) (0.203)

(0.453) (0.000) (0.242) (0.357) (0.000) (0.122) (0.416) (0.000) (0.194)

BICM Adjusted 6.0% 16.0% 0.38 84.3% 26.7% 5.2% 15.4% 0.34 70.1% 27.3% 4.1% 15.6% 0.26 62.5% 27.1%

(0.004) (0.700) (0.000) (0.013) (0.514) (0.001) (0.057) (0.585) (0.014)

(0.019) (0.001) (0.000) (0.046) (0.000) (0.001) (0.128) (0.000) (0.013)

Table 5 (cont.)

Panel B: Minimum-Variance Without Short Selling

30 Days 60 Days 90 Days
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Mean Std SR MTO MDD Mean Std SR MTO MDD Mean Std SR MTO MDD

Historical Covariance (HC) 1.4% 15.3% 0.09 61.4% 25.1% 1.4% 15.3% 0.09 61.4% 25.1% 1.4% 15.3% 0.09 61.4% 25.1%

Equally Weighted (EW) 1.9% 20.4% 0.09 5.8% 29.1% 1.9% 20.4% 0.09 5.8% 29.1% 1.9% 20.4% 0.09 5.8% 29.1%

(0.400) (1.000) (0.488) (0.400) (1.000) (0.488) (0.400) (1.000) (0.488)

Ledoit & Wolf Model (LW) 2.3% 14.9% 0.16 49.9% 24.4% 2.3% 14.9% 0.16 49.9% 24.4% 2.3% 14.9% 0.16 49.9% 24.4%

(0.284) (0.360) (0.197) (0.284) (0.360) (0.197) (0.284) (0.360) (0.197)

(0.410) (0.000) (0.205) (0.410) (0.000) (0.205) (0.410) (0.000) (0.205)

Mixed Model (MICM) 2.7% 14.6% 0.19 60.1% 24.9% 2.6% 14.8% 0.18 59.3% 24.9% 2.2% 14.7% 0.15 58.7% 24.5%

(0.207) (0.255) (0.106) (0.230) (0.315) (0.134) (0.306) (0.300) (0.218)

(0.333) (0.000) (0.112) (0.357) (0.000) (0.141) (0.432) (0.000) (0.227)

Mixed Model Mean Alpha 1.8% 14.6% 0.12 53.7% 25.1% 1.9% 14.7% 0.13 53.2% 25.2% 1.7% 14.7% 0.11 53.8% 25.2%

(MICMm) (0.402) (0.270) (0.339) (0.383) (0.301) (0.316) (0.429) (0.304) (0.381)

(0.480) (0.000) (0.350) (0.498) (0.000) (0.327) (0.457) (0.000) (0.392)

Implied Variance (IVH) 1.9% 14.8% 0.13 66.5% 25.4% 1.7% 14.9% 0.11 55.1% 25.6% 1.1% 14.9% 0.07 50.9% 25.4%

(0.365) (0.333) (0.296) (0.420) (0.352) (0.374) (0.434) (0.372) (0.583)

(0.486) (0.000) (0.307) (0.465) (0.000) (0.385) (0.345) (0.000) (0.595)

AHCM 1.4% 15.4% 0.09 72.7% 25.7% 2.3% 15.2% 0.15 57.3% 25.9% 1.6% 15.1% 0.10 51.3% 25.4%

(0.499) (0.542) (0.506) (0.292) (0.461) (0.216) (0.455) (0.437) (0.431)

(0.399) (0.000) (0.517) (0.417) (0.000) (0.225) (0.437) (0.000) (0.442)

BICM 2.3% 14.6% 0.15 57.9% 25.2% 2.7% 14.7% 0.19 42.7% 25.2% 2.1% 14.9% 0.14 37.3% 25.6%

(0.295) (0.275) (0.202) (0.201) (0.283) (0.103) (0.320) (0.359) (0.241)

(0.422) (0.000) (0.211) (0.327) (0.000) (0.109) (0.445) (0.000) (0.251)

BICM Adjusted 5.4% 16.2% 0.34 76.6% 26.5% 4.7% 15.7% 0.30 63.0% 26.7% 3.8% 15.8% 0.24 55.2% 27.0%

(0.009) (0.753) (0.001) (0.025) (0.613) (0.003) (0.080) (0.665) (0.028)

(0.038) (0.001) (0.001) (0.078) (0.000) (0.004) (0.171) (0.001) (0.030)

Table 5 (cont.)

Panel C: Minimum-Variance With Threshold Weights

30 Days 60 Days 90 Days
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However, the mean turnover of all strategies (1 month) is significantly higher when 

compared to the EW portfolio. Possible gains from outperforming EW are therefore likely to 

be consumed by transaction costs. The turnover for the IVH, AHCM, BICM, and BICM 

Adjusted strategies, however, can be significantly reduced if longer forecasting periods are 

chosen. For example, when 60-days-to-expiration-options instead of 30–days-to-expiration-

options are used, the portfolio turnover for the BICM Adjusted methodology is reduced by 

nearly half. The reduction in turnover is even more pronounced for longer maturity options 

(e.g. 90-days-to-maturity). Similar results are observable for the BICM strategy. With 

increasing time-to-maturity, its already low turnover ratio reduces to a level as low as the 

one of the EW benchmark. Using options with longer time-to-maturity therefore smoothes 

short-term effects and allows construction of more stable portfolios. This can be observed 

for all portfolio strategies, and not only for the ERC optimization. Even though we conclude 

that option-implied are not superior to historical covariance strategies when weighting 

restrictions are applied, these results indicate that options indeed provide limited forward-

looking information. Long-maturity options identify long-term expectations about 

constituent returns, giving less weight to short-term trends. In the ERC portfolio, the BICM 

is therefore a relevant alternative to the historical covariance estimator. It provides similar 

returns and standard deviations, yet at a lower mean turnover (with even marginally higher 

Sharpe ratio in the DJIA case). 

 

Panel B in table 5 (table A3) shows the results for option-implied strategies using minimum-

variance optimization with short selling constraints. In this framework, all option-implied 

strategies outperform the EW portfolio in standard deviation at the one percent level of 

significance. The Sharpe ratios of the MICM, IVH, and BICM Adjusted portfolios are also 

higher than the corresponding values of the EW portfolio.  

However, in order to correctly reflect the value added by option-implied covariance 

estimates, we need to compare option-implied strategies to the HC estimator. No significant 

differences between the HC methodology and the option-implied strategies are observed for 

standard deviation. Yet, all of the option-implied strategies outperform the HC methodology 

with respect to Sharpe ratio (three of them showing significant differences). The BICM 

Adjusted methodology thereby exhibits the largest Sharpe ratio of 0.38 (0.26 for the S&P 

100). Its mean return is significantly higher (1% level; 5% for the S&P 100) than the return 

of the historical covariance method. The difference in means of the BICM Adjusted and the 

HC method is also significant for the forecasting horizon of 60 (5% level; 1% for the S&P 
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100) and 90 days (10% level; 1% for the S&P 100), respectively. However, the difference in 

means decreases with the length of the estimation window.
62

 These results show that 

important information about the recent covariance structure may get lost when using longer 

estimation windows. Yet, long-term options allow reduction of portfolio turnover. In fact, 

this trade-off is similar to the problem of choosing an adequate estimation window for 

historical covariance estimators. On the one hand, recent information should be included in 

the covariance estimation and, on the other hand, a decent structure should be applied to the 

estimators. 

Compared to the HC portfolio, the BICM method shows lower volatilities and turnovers for 

longer maturities (although volatilities are not significantly different; this only capitalizes for 

the DJIA). Applied in a minimum-variance context, the BICM approach therefore allows to 

optimize the portfolio variance and to consider long-term trends, reducing turnover and 

increasing the Sharpe ratio. 

 

Figure 7 Portfolio evolution of different option-implied and historical strategies using a short selling 

restricted minimum-variance optimization (period of estimation: December 1997 to January 2012) 

 

Panel C shows similar results as for the case with short selling restrictions. The BICM 

Adjusted again turns out to be the best estimator in terms of portfolio performance. 
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 However, the Sharpe ratio is still at a level of 0.34 and 0.26, respectively. 
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However, in comparison to panel B, mean returns decrease for all option strategies. This 

indicates that option-implied portfolios concentrate on fewer assets compared to the 

historical covariance method. Note, however that the reported deviations are not statistically 

significant. 

 

Figure 7 provides the cumulative return of all estimation methodologies using minimum-

variance optimization and the DJIA sample. Among the different strategies, the BICM 

Adjusted shows the highest cumulative return over the period from December 1997 to 

January 2012. It performs especially well at the beginning of the millennium, but declines 

during the financial crisis of 2007/2008. Yet, compared to the benchmark portfolio (EW) its 

downturn is less severe. 

Even though all option-implied strategies outperform the historical covariance methodology, 

the benchmark portfolio (EW) dominates in compound return until the advent of the 

financial crisis of 2007/2008 (except for the BICM Adjusted). However, during the crisis, all 

option-implied strategies – as well as the historical strategy – perform  better than the EW 

approach in terms of mean return and maximum drawdown.  

Figure 7 further shows that the performance evolution of the MICM closely resembles the 

LW covariance portfolio over the whole estimation period. This is explained by the close 

relationship of the concept behind these two methodologies. The MICM method is, in fact, 

inspired by the covariance estimator of the Ledoit & Wolf model (see chapter 3.2.3). Both 

strategies demonstrate low volatilities and behave relatively stable during the financial crisis 

of 2007/2008. While this is an attractive property, both methods fail to participate in bull-

markets and thus show lower mean returns than the remaining strategies. 

 

The fact that the BICM Adjusted approach outperforms all presented methodologies is 

attributed to the inclusion of option-implied skewness estimates in the beta evaluation (cf. 

chapter 3.2.2). The measure of skewness is shown to be generally negative and tends to 

adapt quickly in crisis periods. As a consequence, its informational content is likely to add 

value to the covariance estimation. The volatility measure, in contrast, can be interpreted as a 

symmetric measure, providing less information about downturn events. This might explain 

the outperformance of the BICM Adjusted methodology during our estimation period and 

implies a particularly well performance of the BICM Adjusted method in negative market 

environments (see table 6). However, the remaining option-implied strategies are also 

expected to provide better results in crisis periods, because implied measures are assumed to 
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Mean Std SR MTO MDD Mean Std SR MTO MDD
1 -1 1 1 -1 1

Historical Covariance (HC) 11.4% 13.5% 0.84 16.7% 25.6% -18.8% 25.3% -0.74 14.8% 18.4%

Equally Weighted (EW) 11.9% 14.6% 0.81 7.5% 27.9% -19.9% 29.5% -0.67 5.1% 21.4%

(0.387) (0.808) (0.608) (0.580) (0.864) (0.329)

Ledoit & Wolf Model (LW) 11.5% 13.6% 0.85 12.2% 25.5% -18.1% 25.7% -0.70 10.9% 19.0%

(0.470) (0.530) (0.485) (0.445) (0.545) (0.403)

(0.585) (0.213) (0.377) (0.371) (0.163) (0.579)

Mixed Model (MICM) 11.7% 13.5% 0.87 16.7% 25.4% -18.4% 25.3% -0.73 13.9% 18.8%

(0.422) (0.520) (0.420) (0.469) (0.497) (0.463)

(0.539) (0.205) (0.315) (0.392) (0.135) (0.639)

Mixed Model Mean Alpha 11.6% 13.5% 0.86 12.1% 25.6% -18.2% 25.6% -0.71 11.5% 18.7%

(MICMm) (0.447) (0.511) (0.443) (0.455) (0.526) (0.427)

(0.564) (0.199) (0.337) (0.380) (0.151) (0.604)

Implied Variance (IVH) 11.6% 12.8% 0.90 23.1% 24.2% -18.0% 23.5% -0.77 20.0% 16.8%

(0.445) (0.298) (0.285) (0.433) (0.291) (0.564)

(0.565) (0.081) (0.198) (0.358) (0.050) (0.731)

AHCM 11.8% 13.6% 0.87 18.7% 25.6% -18.9% 25.9% -0.73 13.8% 19.4%

(0.395) (0.550) (0.410) (0.511) (0.560) (0.473)

(0.513) (0.228) (0.306) (0.430) (0.172) (0.649)

BICM 11.9% 13.7% 0.87 9.6% 25.6% -18.4% 26.1% -0.70 9.3% 19.5%

(0.377) (0.570) (0.401) (0.468) (0.588) (0.403)

(0.494) (0.243) (0.298) (0.392) (0.190) (0.579)

BICM Adjusted 12.3% 14.4% 0.85 19.8% 25.9% -18.3% 26.5% -0.69 35.4% 20.3%

(0.314) (0.750) (0.462) (0.457) (0.628) (0.365)

(0.426) (0.421) (0.355) (0.383) (0.220) (0.540)

Non-Crisis States Crisis States

Panel A: Equal Risk Contribution (ERC)

Table 6

Performance of Option-Implied Portfolios using the DJIA Constituents ï Crisis and Non-Crisis States

Table 6 shows the performance of different portfolio strategies using historical and option implied information. The

results are presented for the Dow Jones Industrial Average (DJIA) index. Panel A, B, and C show the results using the

equal risk contribution (ERC), the minimum variance without short selling, and the minimum variance with threshold

optimization. The results of the option implied strategies are generally compared to the ones using historical moment

estimations. The moments of the option implied strategies are derived from 30 days-to-maturity options. The results for 

good and bad market states are depicted seperately for each strategy, depicted as non-crisis and crisis states. The

performance measures depicted are the mean of the mean return, the standard deviation (Std), the Sharpe ratio (SR),

the mean portfolio turnover (MTO), and the maximum portfolio drawdown (MDD). Mean and standard deviation terms

are annualized. The values in parentheses depict the p-values of a one-sided t-test for higher mean, a one-sided F-test

for lower standard deviation, and a one-sided test for normality of higher Sharpe ratio in comparison to the HC and the

EW strategy. The period under study is from December 1997 to January 2012, applying a monthly rebalancing

approach.

be more flexible with respect to the arrival of new information. In contrast, rolling window 

historical covariance estimators are likely to underperform, since their construction does not 

allow quick adaptation to new market environments. 
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Mean Std SR MTO MDD Mean Std SR MTO MDD

Historical Covariance (HC) 9.2% 12.3% 0.74 66.5% 25.3% -15.3% 20.5% -0.75 74.5% 15.9%

Equally Weighted (EW) 11.9% 14.6% 0.81 7.5% 27.9% -19.9% 29.5% -0.67 5.1% 21.4%

(0.063) (0.966) (0.254) (0.823) (0.995) (0.316)

Ledoit & Wolf Model (LW) 9.8% 12.2% 0.80 55.2% 24.5% -13.5% 19.9% -0.68 60.9% 16.1%

(0.351) (0.454) (0.288) (0.323) (0.414) (0.331)

(0.883) (0.026) (0.541) (0.097) (0.002) (0.517)

Mixed Model (MICM) 10.4% 11.8% 0.88 63.7% 23.9% -12.6% 18.9% -0.67 72.9% 15.8%

(0.226) (0.314) (0.098) (0.242) (0.280) (0.305)

(0.810) (0.011) (0.268) (0.067) (0.001) (0.487)

Mixed Model Mean Alpha 9.8% 11.7% 0.83 58.4% 25.2% -13.8% 19.0% -0.73 66.0% 15.7%

(MICMm) (0.344) (0.304) (0.193) (0.352) (0.299) (0.450)

(0.884) (0.010) (0.421) (0.107) (0.001) (0.640)

Implied Variance (IVH) 11.2% 11.4% 0.98 73.6% 24.6% -12.6% 19.2% -0.66 89.6% 18.5%

(0.094) (0.205) (0.011) (0.246) (0.322) (0.283)

(0.651) (0.004) (0.056) (0.069) (0.001) (0.461)

AHCM 10.6% 11.7% 0.91 92.7% 25.4% -14.7% 20.3% -0.72 90.5% 16.8%

(0.176) (0.277) (0.054) (0.442) (0.481) (0.440)

(0.764) (0.008) (0.178) (0.148) (0.004) (0.630)

BICM 8.9% 11.4% 0.78 73.8% 24.5% -12.6% 19.8% -0.64 75.6% 17.1%

(0.568) (0.196) (0.357) (0.249) (0.404) (0.242)

(0.958) (0.004) (0.615) (0.070) (0.002) (0.411)

BICM Adjusted 12.6% 13.1% 0.97 77.6% 25.2% -8.4% 21.1% -0.40 88.1% 17.4%

(0.019) (0.732) (0.016) (0.045) (0.585) (0.012)

(0.341) (0.114) (0.075) (0.011) (0.008) (0.035)

Mean Std SR MTO MDD Mean Std SR MTO MDD

Historical Covariance (HC) 9.6% 11.9% 0.81 55.2% 25.1% -16.5% 20.9% -0.79 64.8% 16.1%

Equally Weighted (EW) 11.9% 14.6% 0.81 7.5% 27.9% -19.9% 29.5% -0.67 5.1% 21.4%

(0.097) (0.986) (0.481) (0.752) (0.993) (0.228)

Ledoit & Wolf Model (LW) 10.2% 11.6% 0.88 46.3% 24.1% -14.8% 20.4% -0.73 51.9% 15.1%

(0.349) (0.385) (0.244) (0.337) (0.429) (0.345)

(0.834) (0.006) (0.259) (0.153) (0.004) (0.640)

Mixed Model (MICM) 10.5% 11.3% 0.93 53.9% 24.9% -14.2% 19.8% -0.71 63.4% 15.8%

(0.283) (0.302) (0.136) (0.280) (0.358) (0.315)

(0.793) (0.003) (0.147) (0.123) (0.002) (0.608)

Mixed Model Mean Alpha 10.0% 11.5% 0.87 47.7% 25.1% -16.0% 19.7% -0.81 57.0% 15.7%

(MICMm) (0.407) (0.353) (0.286) (0.449) (0.337) (0.556)

(0.867) (0.005) (0.303) (0.213) (0.002) (0.820)

Implied Variance (IVH) 10.2% 11.4% 0.90 56.5% 25.4% -16.0% 20.3% -0.79 71.7% 18.5%

(0.345) (0.333) (0.209) (0.453) (0.426) (0.494)

(0.834) (0.004) (0.223) (0.218) (0.004) (0.775)

AHCM 10.7% 11.5% 0.93 69.5% 25.7% -19.0% 21.5% -0.88 74.9% 16.6%

(0.231) (0.360) (0.119) (0.726) (0.588) (0.719)

(0.747) (0.005) (0.130) (0.429) (0.012) (0.915)

BICM 9.9% 11.2% 0.88 53.5% 24.5% -14.3% 20.3% -0.70 60.4% 17.3%

(0.432) (0.263) (0.249) (0.289) (0.422) (0.288)

(0.881) (0.002) (0.265) (0.128) (0.004) (0.577)

BICM Adjusted 12.4% 13.0% 0.96 63.3% 25.1% -9.7% 21.6% -0.45 83.3% 17.4%

(0.045) (0.827) (0.085) (0.051) (0.600) (0.015)

(0.391) (0.102) (0.093) (0.022) (0.013) (0.069)

Table 6 (cont.)

Panel C: Minimum-Variance With Threshold Weights

Non-Crisis States Crisis States

Panel B: Minimum-Variance Without Short Selling

Non-Crisis States Crisis States
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Previously, we stated that option-implied strategies unfold their full potential in crisis 

periods. The theoretical reasoning behind this assumption was already outlined. Moreover, 

following the argumentation of Black (1975), investors regard options as superior compared 

to the direct investment in the underlying asset. This hypothesis is assumed to be valid in the 

context of information revelation and with respect to the exploitation of private information. 

As noted by Kempf, Korn & Sassning (2012) it is therefore likely that a higher fraction of 

informed investors can be observed during periods of high information asymmetry (p. 11). 

Consequently, option prices should be particularly informative during negative markets and 

option-implied strategies are assumed to outperform during such phases. 

This assumption is now tested by splitting the sample period into crisis and non-crisis 

phases. Table 6 (table A4) shows the portfolio performance in positive and negative market 

environments.  Similar to the results in table 5 (table A3), in positive markets no significant 

differences in mean or standard deviation between ERC optimized strategies can be 

observed. However, in negative market situations, standard deviation of all option-implied 

models is lower than the one of the EW benchmark (not signifianctly). Nevertheless, the 

option-implied portfolios do not outperform the HC or LW method, rejecting their 

superiority in the ERC context (similar to the results in table 5 and A3). 

 

However, if we consider the minimum-variance strategy with short sale restrictions, a 

different conclusion can be drawn (see panel B). While the option-implied strategies do not 

outperform the EW benchmark in mean returns during positive market environments, they 

significantly outperform it during negative states. Again, the BICM Adjusted shows most 

striking results with its mean being significantly different from the HC mean in positive as 

well as negative market environments ( -values < 0.01). It also significantly outperforms the 

estimator of Ledoit & Wolf. However, the results of the other option-implied strategies – 

neither in crisis nor non-crisis states – do not differ significantly from the HC benchmark. 

Yet, we can show that in crisis states, differences between the option-implied and the HC 

portfolios are significantly higher than those in non-crisis states (unreported results). This 

confirms our assumption about the diverging influence of option-implied forecasting power 

in positive and negative market environments. 

 

The previous results confirm the expectations of chapter 5.3.1. Option-implied strategies do, 

in fact, outperform in certain situations; however, this outperformance is difficult to measure 

and often not significant enough to distinguish between different strategies. Nevertheless, 
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considering additional performance measures like annualized turnover or maximum 

drawdown favors option-implied portfolio selection strategies (especially for longer option-

inherent forecasting horizons of 60 and 90 days). It is noteworthy that with respect to the 

forecasting horizon, the BICM Adjusted approach shows a higher trade-off between these 

two areas compared to other strategies. 

Nevertheless, one aspect not sufficiently considered is the risk adjustment of the distribution. 

So far, we dealt only with distributions under the risk-free measure. We will therefore test 

whether our results are also robust to risk adjustments. 

 

 

5.3.3. Risk-Adjusted Moment Portfolios 

In the following, we transform the risk-neutral estimates to their objective analogs and test 

whether this risk adjustment of the implied RND yields better portfolio volatility and return 

expectations. Chapter 4 introduces two different procedures to deduce risk-adjusted 

moments from the option-implied estimators. The pricing kernel method uses the power 

utility function, in combination with the estimated  , to derive the risk-adjusted pdf. The 

market-implied variance is then easily obtained by the indirect integral method presented in 

section 3.1.2. Employing some additional assumptions about the systematic market factor 

finally allows derivation of the option-implied, risk-adjusted covariance matrix using the 

model of Kempf, Korn & Sassning (2012; BICM). While this procedure is complicated and 

can only be used for the BICM model, the Difference Method is more flexible for 

application to other option-implied measures. Hereto, the historical volatility risk premium 

(HVRP) is derived simply as the relation between implied variance estimate and realized 

variance. The risk-neutral moments are then transformed using this correction factor. 

Unfortunately, the BICM Adjusted methodology cannot be transferred to its physical analog 

without imposing additional assumptions about the market skewness; it is thus excluded 

from the following analysis. 
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Mean Std SR MTO MDD Mean Std SR MTO MDD Mean Std SR MTO MDD
1 -1 1 1 -1 1 1 -1 1

Historical Covariance (HC) 1.8% 18.0% 0.10 15.3% 25.6% 1.8% 18.0% 0.10 15.3% 25.6% 1.8% 18.0% 0.10 15.3% 25.6%

Equally Weighted (EW) 1.9% 20.4% 0.09 5.8% 29.1% 1.9% 20.4% 0.09 5.8% 29.1% 1.9% 20.4% 0.09 5.8% 29.1%

(0.495) (0.944) (0.555) (0.495) (0.944) (0.555) (0.495) (0.944) (0.555)

Mixed Model (MICM) 2.2% 18.0% 0.12 14.7% 25.3% 2.2% 18.0% 0.12 14.6% 25.4% 2.1% 18.0% 0.12 14.6% 25.4%

(0.439) (0.487) (0.412) (0.439) (0.490) (0.413) (0.444) (0.497) (0.421)

(0.447) (0.052) (0.359) (0.447) (0.053) (0.360) (0.452) (0.055) (0.367)

Mixed Model Mean Alpha 2.1% 18.0% 0.12 12.5% 25.5% 2.1% 18.0% 0.12 12.6% 25.5% 2.1% 18.1% 0.12 12.8% 25.6%

(MICMm) (0.441) (0.503) (0.417) (0.441) (0.510) (0.417) (0.445) (0.513) (0.424)

(0.449) (0.057) (0.364) (0.449) (0.059) (0.364) (0.453) (0.060) (0.370)

Implied Variance (IVH) 2.3% 16.6% 0.14 21.9% 23.9% 2.2% 16.6% 0.13 18.2% 24.3% 2.1% 16.6% 0.13 17.0% 24.2%

(0.407) (0.141) (0.321) (0.426) (0.149) (0.350) (0.437) (0.150) (0.366)

(0.417) (0.004) (0.273) (0.436) (0.004) (0.300) (0.446) (0.004) (0.315)

AHCM 2.0% 18.0% 0.11 21.9% 25.3% 1.8% 17.9% 0.10 17.3% 25.5% 1.8% 17.9% 0.10 17.3% 25.1%

(0.463) (0.492) (0.447) (0.515) (0.470) (0.518) (0.514) (0.465) (0.516)

(0.470) (0.054) (0.393) (0.519) (0.048) (0.463) (0.517) (0.047) (0.460)

BICM 2.4% 18.2% 0.13 10.8% 25.2% 2.4% 18.2% 0.13 8.6% 25.4% 2.3% 18.2% 0.13 7.9% 25.3%

(0.395) (0.551) (0.359) (0.398) (0.560) (0.364) (0.404) (0.559) (0.372)

(0.406) (0.072) (0.309) (0.409) (0.075) (0.313) (0.414) (0.074) (0.321)

BICM Gamma 2.4% 18.3% 0.13 10.2% 25.2% 2.2% 18.7% 0.12 7.8% 26.3% 2.2% 18.8% 0.12 7.4% 25.8%

(0.381) (0.590) (0.345) (0.438) (0.675) (0.432) (0.421) (0.705) (0.413)

(0.393) (0.086) (0.295) (0.446) (0.127) (0.378) (0.430) (0.146) (0.359)

Panel A: Equal Risk Contribution (ERC)

Table 7

Performance of Option-Implied Portfolios using the DJIA Constituents ï Risk-Adjusted Case

Table 7 shows the performance of different portfolio strategies using historical and risk-adjusted option implied information. The results are presented for the Dow Jones Industrial

Average (DJIA) index. Panel A, B, and C show the results using the equal risk contribution (ERC), the minimum variance without short selling, and the minimum variance with threshold

optimization. The results of the option implied strategies are generally compared to the ones using historical moment estimations. The moments of the option implied strategies are

derived from 30, 60, and 90 days-to-maturity options. The performance measures depicted are the mean of the mean return, the standard deviation (Std), the Sharpe ratio (SR), the mean 

portfolio turnover (MTO), and the maximum portfolio drawdown (MDD). Mean and standard deviation terms are annualized. The values in parentheses depict the p-values of a one-

sided t-test for higher mean, a one-sided F-test for lower standard deviation, and a one-sided test for normality of higher Sharpe ratio in comparison to the HC and the EW strategy. The

period under study is from December 1997 to January 2012, applying a monthly rebalancing approach.

30 Days 60 Days 90 Days
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Mean Std SR MTO MDD Mean Std SR MTO MDD Mean Std SR MTO MDD

Historical Covariance (HC) 1.4% 15.3% 0.09 71.5% 25.3% 1.4% 15.3% 0.09 71.5% 25.3% 1.4% 15.3% 0.09 71.5% 25.3%

Equally Weighted (EW) 1.9% 20.4% 0.09 5.8% 29.1% 1.9% 20.4% 0.09 5.8% 29.1% 1.9% 20.4% 0.09 5.8% 29.1%

(0.414) (1.000) (0.513) (0.414) (1.000) (0.513) (0.414) (1.000) (0.513)

Mixed Model (MICM) 1.8% 15.5% 0.11 70.9% 27.1% 2.4% 14.8% 0.16 67.9% 23.6% 1.8% 15.3% 0.12 68.2% 24.9%

(0.423) (0.544) (0.397) (0.278) (0.330) (0.187) (0.419) (0.488) (0.385)

(0.520) (0.000) (0.384) (0.390) (0.000) (0.179) (0.517) (0.000) (0.373)

Mixed Model Mean Alpha 1.5% 15.5% 0.10 64.3% 27.8% 2.3% 14.9% 0.15 62.7% 25.1% 2.0% 15.0% 0.14 62.9% 25.5%

(MICMm) (0.485) (0.574) (0.486) (0.307) (0.354) (0.224) (0.363) (0.395) (0.299)

(0.573) (0.000) (0.473) (0.417) (0.000) (0.214) (0.468) (0.000) (0.288)

Implied Variance (IVH) 3.9% 14.6% 0.26 78.3% 23.0% 2.9% 14.8% 0.20 70.6% 24.2% 2.1% 15.5% 0.14 65.6% 27.5%

(0.070) (0.276) (0.014) (0.183) (0.330) (0.090) (0.343) (0.555) (0.289)

(0.152) (0.000) (0.013) (0.292) (0.000) (0.085) (0.449) (0.000) (0.278)

AHCM 2.7% 15.0% 0.18 88.5% 22.9% 2.3% 14.9% 0.16 75.6% 25.5% 1.6% 15.9% 0.10 71.3% 30.7%

(0.221) (0.400) (0.131) (0.299) (0.346) (0.214) (0.466) (0.679) (0.469)

(0.332) (0.000) (0.124) (0.410) (0.000) (0.205) (0.556) (0.001) (0.456)

BICM 2.3% 14.5% 0.16 68.9% 24.5% 3.7% 13.9% 0.27 54.4% 25.5% 2.3% 15.2% 0.15 48.6% 28.1%

(0.306) (0.249) (0.211) (0.080) (0.100) (0.013) (0.313) (0.451) (0.240)

(0.418) (0.000) (0.202) (0.169) (0.000) (0.012) (0.422) (0.000) (0.230)

BICM Gamma 3.3% 14.1% 0.23 73.2% 26.5% 1.3% 14.8% 0.09 63.8% 26.1% 1.4% 15.1% 0.09 58.2% 26.3%

(0.127) (0.150) (0.037) (0.528) (0.330) (0.523) (0.503) (0.433) (0.498)

(0.231) (0.000) (0.035) (0.610) (0.000) (0.510) (0.588) (0.000) (0.484)

Panel B: Minimum-Variance Without Short Selling

30 Days 60 Days 90 Days

Table 7 (cont.)
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Mean Std SR MTO MDD Mean Std SR MTO MDD Mean Std SR MTO MDD

Historical Covariance (HC) 1.4% 15.3% 0.09 61.4% 25.1% 1.4% 15.3% 0.09 61.4% 25.1% 1.4% 15.3% 0.09 61.4% 25.1%

Equally Weighted (EW) 1.9% 20.4% 0.09 5.8% 29.1% 1.9% 20.4% 0.09 5.8% 29.1% 1.9% 20.4% 0.09 5.8% 29.1%

(0.400) (1.000) (0.488) (0.400) (1.000) (0.488) (0.400) (1.000) (0.488)

Mixed Model (MICM) 2.6% 14.5% 0.18 60.7% 23.3% 2.4% 14.8% 0.16 59.1% 24.1% 2.4% 14.9% 0.16 59.3% 24.2%

(0.225) (0.247) (0.123) (0.272) (0.343) (0.182) (0.270) (0.344) (0.179)

(0.352) (0.000) (0.129) (0.399) (0.000) (0.190) (0.396) (0.000) (0.187)

Mixed Model Mean Alpha 1.9% 14.8% 0.13 54.3% 24.8% 1.9% 14.9% 0.13 54.1% 25.0% 1.9% 14.9% 0.13 54.3% 25.1%

(MICMm) (0.375) (0.315) (0.308) (0.364) (0.363) (0.298) (0.376) (0.374) (0.315)

(0.495) (0.000) (0.318) (0.485) (0.000) (0.308) (0.496) (0.000) (0.326)

Implied Variance (IVH) 2.2% 14.9% 0.15 63.5% 24.4% 2.0% 15.0% 0.14 52.9% 24.3% 1.5% 15.0% 0.10 49.2% 24.5%

(0.300) (0.376) (0.218) (0.348) (0.377) (0.278) (0.465) (0.407) (0.442)

(0.425) (0.000) (0.227) (0.470) (0.000) (0.288) (0.572) (0.000) (0.454)

AHCM 1.6% 15.8% 0.10 73.7% 23.8% 0.9% 15.6% 0.06 64.0% 24.9% 1.6% 15.7% 0.10 61.2% 25.2%

(0.436) (0.653) (0.425) (0.607) (0.601) (0.656) (0.438) (0.619) (0.424)

(0.545) (0.001) (0.436) (0.686) (0.000) (0.667) (0.547) (0.000) (0.436)

BICM 2.9% 14.3% 0.21 56.1% 24.8% 2.7% 14.5% 0.19 43.7% 25.5% 2.4% 14.6% 0.16 39.2% 26.1%

(0.168) (0.184) (0.067) (0.205) (0.229) (0.102) (0.272) (0.273) (0.175)

(0.291) (0.000) (0.071) (0.331) (0.000) (0.108) (0.399) (0.000) (0.183)

BICM Gamma 3.0% 14.6% 0.21 58.1% 26.0% 3.3% 14.6% 0.23 46.2% 25.5% 1.8% 14.9% 0.12 40.6% 25.8%

(0.161) (0.255) (0.067) (0.115) (0.273) (0.036) (0.405) (0.353) (0.352)

(0.282) (0.000) (0.071) (0.225) (0.000) (0.039) (0.521) (0.000) (0.363)

30 Days 60 Days 90 Days

Panel C: Minimum-Variance With Threshold Weights

Table 7 (cont.)
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Table 7 shows the results for the portfolio strategies using risk-adjusted moments. All 

option-implied methods – except for BICM Gamma – are HVRP-adjusted estimators. BICM 

Gamma refers to the original BICM approach for which the estimated pricing kernel method 

is applied to the covariance structure. Since no option prices are available for the DJIA 

before October 1997, for the first three years the risk preference parameter   is estimated 

using an overlapping rolling window procedure. To check for robustness of this 

methodology, we apply the same procedure to the S&P 100 starting January 1996. The 

results are similar to those of the DJIA. Additionally, we test the Gamma method by 

inserting the estimates derived for the S&P 100 options.
63

 The results are robust for these 

replacements, too. As can be seen in table 7, the risk adjustment has only a marginal 

influence on the derived portfolio strategies. Contrary to our expectation, the volatility of the 

MICM and the MICMm increases compared to the non-adjusted strategies. Nevertheless, 

these results are again insignificant. Therefore, it can be stated that the HVRP risk 

adjustment adds no value to the estimation of option-implied moments within a portfolio 

optimization context. While these results seem disappointing at first, we can conclude that 

risk-neutral moments are sufficient estimators because the results of the portfolio 

optimization are very comparable to the risk-free case. Of course, this is a joint test for 

quality of the derived adjustment methodology, and for interchangeability of risk-neutral and 

real moments in portfolio selection. However, we can state that there is no significant 

difference in terms of performance when we use our risk-adjusted model.
64

 

Finally, we compare the results of the risk-neutral BICM portfolio performance to the more 

sophisticated BICM Gamma methodology. The BICM Gamma method improves portfolio 

performance by decreasing volatility, and at the same time, increasing mean returns. This 

leads to a significantly higher Sharpe ratio. Even though the volatility and mean of the risk-

adjusted portfolios are not significantly different from their corresponding risk-neutral 

analogs, the resulting Sharpe ratios are. An adjustment of the implied moments using a 

pricing kernel method, therefore, leads to better portfolio selection despite some strong 

structural assumptions. These results show that the HVRP factor may not be sufficient for 

the adaption of risk-neutral moments. Therefore, the Gamma risk adjustment method, as 

applied to BICM Gamma, should be preferred. 

  

                                                           
63

 In theory,   should be similar for these two market portfolios. 
64

 In unreported results, we also tested for the unconstrained minimum-variance optimization, but observed no 

significant differences between the risk-adjusted and unadjusted case. 
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6. Conclusion 

In this paper we investigate on the possibility of including option-implied information in 

portfolio selection. Traditionally, moments are estimated using backward-looking time series 

data, causing a subsequent portfolio allocation to be solely dependent on historical 

observations. Therefore, using forward-looking, implied market expectations inherent in 

option prices to optimize a portfolio should provide lower volatilities in a minimum-variance 

framework. Several different estimators were introduced and have been tested for their 

forecasting power and contribution to portfolio selection. The analysis of minimum-variance 

portfolios is thereby justified by the assumption that all assets possess the same global mean 

return. This transforms a potential mean-variance to a simple minimum-variance problem 

and follows directly from the limitations of estimating mean returns. As our analysis focuses 

on portfolio selection using option-implied moments, we must restrict ourselves to variance 

and covariance optimizations, isolating the contribution of option-implied information. 

Beside minimum-variance portfolio strategies, we therefore also consider equal risk 

contribution strategies (ERC). 

The results of the empirical analysis confirm the forecasting power of option-implied 

information within a portfolio optimization context. However, because of the broad 

diversification of market indices, a significant contribution of implied moments towards the 

optimization can only be proved within a fully unrestricted optimization framework. Yet, our 

results also validate the use of option-implied data in restricted optimizations and confirm 

option-implied strategies to perform at least comparably to historically estimated portfolio 

strategies. Therefore, they present a valuable alternative to traditional covariance estimators 

in portfolio selection. Although we can even observe positive differences in portfolio 

performance between backward- and forward-looking moments, most of the time these are at 

an insignificant level. This is again due to the good diversification of the benchmark 

portfolios. The adjusted beta implied covariance model (BICM Adjusted) presents an 

exception. It clearly outperforms portfolios optimized with historical return information and 

is therefore a valuable alternative to traditional approaches. Specifically due to its 

consideration of higher-order implied moments, it incorporates more implied information 

about the distribution of an underlying asset. However, this conclusion needs to be 

interpreted with care. The consideration of  option-implied skewness and the accompanied 

outperformance might, in part, be due to higher risk-premia. Unfortunately, it is not possible 
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to test the BICM Adjusted approach for risk-adjusted performance with the methods 

presented in this thesis. 

The HVRP risk adjustment technique applied in section 5.3.3 reveals that there are no 

significant differences between risk-neutral and risk-adjusted option-implied portfolios. This 

finding supports the application of risk-neutral density functions in portfolio selection, but is 

most likely due to misspecified risk-premia. Our self-developed Gamma risk adjustment for 

the BICM method reveals partially different results and proves to be a valuable alternative to 

the HVRP technique. Since the findings are not entirely consistent among these approaches, 

we see potential for further consideration in future research. 

Furthermore, our analysis reveals that option-implied moments of longer maturities can lead 

to significant reductions in portfolio turnover, ceteris paribus. This is most likely due to the 

long-term market expectations in distributional properties of future stock returns. 

Accordingly, portfolios optimized with respect to longer-term implied moments produce 

more stable allocations. Option-implied moments are, therefore, also a valuable alternative to 

historical moments with respect to portfolio turnover. 

 

This analysis has revealed the strengths of option-implied moments for portfolio selection, 

and we see great potential for future research in this area. Especially research in the field of 

higher-order, option-implied moments and risk adjustment of option-implied information has 

not yet received the necessary attention. The strong dependence of higher moments on the 

underlying density function turns out to be of critical relevance. By properly extrapolating 

this information, we expect to add much more information to the optimization procedure. 
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Appendix A: Fundamental Theorem of Calculus 

The following proof relies on the paper of Carr & Madan (2011). The fundamental theorem 

of calculus implies that for any fixed F: 

 

                       
 

 

             
 

 

 

                           
 

 

   
 

 

                      
 

 

   
 

 

 

(A1) 

 

Noting that       does not depend on   and using Fubini’s theorem
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(A2) 

 

Taking the integral over   yields 

 

                                       
 

 

                   
 

 

 

                                
 

 

              
 

 

  

 

(A3) 

where                    represents the maximum operator. If   is equal to the 

initial stock price    – i.e.      – then we obtain equation (3.1). 
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 If        is a continuous function on a rectangle              , then 
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Appendix B: Option-Implied Moments 

The quadratic, cubic, and quartic contract can be derived by taking the derivative of the 

payoff function of each contract with respect to    (cf. Bakshi, Kapadia & Madan, 2003). 

The second partial derivatives of the three different contracts are then 
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and the prices are 
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where          and          are functions of the strike price   and time-to-maturity  . 

Accordingly the risk-neutral skewness is given by 
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and the risk-neutral kurtosis by 
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where       is defined as in formula 3.4 (see section 3.1.1). 
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Appendix C: Higher-Order Moments BICM 

Instead of assuming that stocks contain the same proportion of systematic risk with respect 

to the variance, it is assumed that they contain the same proportion of systematic risk 

  
    with respect to “skewness”. Kempf, Korn & Sassning (2012) used third- and fourth-

order non-standardized moments for the estimation. Similarly to formula 3.29 we obtain 
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where     is the third central moment. Rearranging then yields: 
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Using the same procedure as in formula 3.30-3.33 leads to: 
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The higher-order implied moments are thereby derived using the approach of Bakshi, 

Kapadia & Madan (2003) as shown in appendix B. 

Finally, the covariance matrix can also be obtained by assuming that all stocks contain the 

same proportion of systematic risk   
     with respect to the fourth-order moment. Again, 

using the same procedure, the covariance estimator is given by 
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where    is the fourth central moment. 
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Appendix D: Spectral Decomposition 

Rebonato & Jäckel (1999) present two simple models to produce a consistent positive semi-

definite correlation matrix: the spectral and the hypersphere decomposition. These models 

can be used in case the econometric correlation matrix is ill-conditioned and are guaranteed 

to provide positive-semi-definite, symmetric and real matrices. While the spectral 

decomposition is in principle “not as general [as the hypersphere decomposition,] it is 

extremely fast and produces results very close to those obtained using the general procedure” 

(Rebonato & Jäckel, 1999, p. 12). In the following we introduce the spectral decomposition 

technique applied in this thesis. 

Let        be a symmetric matrix,        be the diagonal matrix of eigenvalues    

(i.e.             for element  , and        be the eigensystem of  : 

       (D1) 

We then set the negative elements of   to zero such that: 
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A non-positive-semi-definite matrix has at least one negative eigenvalue, meaning that 

matrix  
 
 contains at least one zero element on its diagonal. We define 

          (D3) 

and introduce a scaling matrix   corresponding to the eigensystem   
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where    
  is a squared element of   for row   and column  . The standardized matrix 

                (D5) 

is then used to derive 

         (D6) 

which is by construction positive-semi-definite and has unit diagonal elements. 
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Mean Std SR Mean Std SR Mean Std SR
1 -1 1 1 -1 1 1 -1 1

Historical Covariance (HC) -2.8% 16.0% -0.17 -2.8% 16.0% -0.17 -2.8% 16.0% -0.17 

Equally Weighted (EW) -4.2% 18.4% -0.23 -4.2% 18.4% -0.23 -4.2% 18.4% -0.23 

(0.784) (0.980) (0.771) (0.784) (0.980) (0.771) (0.784) (0.980) (0.771)

Ledoit & Wolf Model (LW) -2.8% 16.2% -0.17 -2.8% 16.2% -0.17 -2.8% 16.2% -0.17 

(0.510) (0.561) (0.504) (0.510) (0.561) (0.504) (0.510) (0.561) (0.504)

(0.224) (0.028) (0.233) (0.224) (0.028) (0.233) (0.224) (0.028) (0.233)

Mixed Model (MICM) -2.4% 15.9% -0.15 -2.5% 15.8% -0.16 -2.5% 15.8% -0.16 

(0.413) (0.465) (0.383) (0.443) (0.446) (0.428) (0.433) (0.437) (0.416)

(0.161) (0.016) (0.151) (0.178) (0.015) (0.179) (0.172) (0.014) (0.171)

Mixed Model Mean Alpha -2.6% 15.9% -0.16 -2.6% 15.9% -0.16 -2.6% 15.9% -0.16 

(MICMm) (0.468) (0.475) (0.459) (0.463) (0.457) (0.454) (0.465) (0.451) (0.458)

(0.194) (0.017) (0.200) (0.191) (0.015) (0.197) (0.192) (0.015) (0.200)

Implied Variance (IVH) -1.8% 14.7% -0.12 -2.0% 14.6% -0.13 -1.9% 14.6% -0.13 

(0.276) (0.100) (0.250) (0.319) (0.095) (0.313) (0.294) (0.084) (0.280)

(0.087) (0.000) (0.079) (0.106) (0.000) (0.111) (0.094) (0.000) (0.094)

AHCM -2.6% 16.2% -0.16 -2.7% 16.2% -0.17 -2.9% 16.3% -0.18 

(0.461) (0.566) (0.435) (0.490) (0.590) (0.473) (0.532) (0.610) (0.527)

(0.191) (0.029) (0.184) (0.211) (0.034) (0.210) (0.240) (0.038) (0.251)

BICM -2.8% 16.7% -0.17 -2.9% 16.6% -0.17 -2.9% 16.7% -0.17 

(0.510) (0.728) (0.478) (0.528) (0.726) (0.504) (0.532) (0.732) (0.508)

(0.227) (0.069) (0.214) (0.240) (0.068) (0.233) (0.243) (0.072) (0.236)

BICM Adjusted -3.5% 16.9% -0.21 -2.9% 16.9% -0.17 -3.0% 16.9% -0.18 

(0.666) (0.792) (0.681) (0.535) (0.796) (0.500) (0.562) (0.786) (0.539)

(0.357) (0.099) (0.394) (0.247) (0.102) (0.230) (0.266) (0.095) (0.261)

30 Days 60 Days 90 Days

Panel A: Equal Risk Contribution (ERC)

Table A1

Forecasting Power of Option-Implied Variances and Covariances ï S&P 100 Index

Table A1 shows the performance of different portfolio strategies using historical and option implied information.

The results are presented for the S&P 100 index. Panel A, B, and C show the results using the equal risk

contribution (ERC), the minimum variance without short selling, and the minimum variance with threshold

optimization. The results of the option implied strategies are generally compared to the ones using historical

moment estimations. The moments of the option implied strategies are derived from 30, 60, and 90 days-to-

maturity options. The performance measures depicted are the sample average of the observed monthly means, the

average of the observed monthly standard deviations (Std), and the average of the observed monthly Sharpe ratios

(SR). All terms are anuualized. The values in parentheses depict the p-values of a one-sided t-test for higher mean,

lower standard deviation, and higher Sharpe ratio in comparison to the HC and the EW strategy. The period under

study is from December 1997 to January 2012, applying a monthly rebalancing approach.

Appendix E: Empirical Results S&P 100 Index 
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Mean Std SR Mean Std SR Mean Std SR

Historical Covariance (HC) -2.9% 12.4% -0.24 -2.9% 12.4% -0.24 -2.9% 12.4% -0.24 

Equally Weighted (EW) -4.2% 18.4% -0.23 -4.2% 18.4% -0.23 -4.2% 18.4% -0.23 

(0.775) (1.000) (0.467) (0.775) (1.000) (0.467) (0.775) (1.000) (0.467)

Ledoit & Wolf Model (LW) -3.2% 12.4% -0.26 -3.2% 12.4% -0.26 -3.2% 12.4% -0.26 

(0.578) (0.497) (0.609) (0.578) (0.497) (0.609) (0.578) (0.497) (0.609)

(0.275) (0.000) (0.641) (0.275) (0.000) (0.641) (0.275) (0.000) (0.641)

Mixed Model (MICM) -1.6% 11.9% -0.14 -1.9% 12.0% -0.16 -2.3% 12.1% -0.19 

(0.163) (0.271) (0.101) (0.213) (0.293) (0.154) (0.311) (0.335) (0.273)

(0.062) (0.000) (0.116) (0.082) (0.000) (0.174) (0.125) (0.000) (0.300)

Mixed Model Mean Alpha -1.9% 11.8% -0.16 -2.2% 11.8% -0.19 -2.2% 11.8% -0.19 

(MICMm) (0.224) (0.219) (0.177) (0.298) (0.222) (0.275) (0.289) (0.242) (0.260)

(0.087) (0.000) (0.199) (0.119) (0.000) (0.303) (0.115) (0.000) (0.287)

Implied Variance (IVH) 0.9% 11.6% 0.08 1.1% 11.6% 0.09 0.3% 11.7% 0.02

(0.002) (0.158) (0.000) (0.001) (0.147) (0.000) (0.008) (0.188) (0.000)

(0.001) (0.000) (0.000) (0.001) (0.000) (0.000) (0.004) (0.000) (0.001)

AHCM 1.0% 12.2% 0.08 0.8% 11.9% 0.06 -0.1% 12.4% -0.01 

(0.002) (0.375) (0.000) (0.003) (0.250) (0.000) (0.018) (0.471) (0.002)

(0.001) (0.000) (0.000) (0.002) (0.000) (0.000) (0.008) (0.000) (0.002)

BICM -0.2% 12.1% -0.01 -0.7% 12.1% -0.06 -1.8% 12.1% -0.15 

(0.019) (0.357) (0.002) (0.050) (0.348) (0.012) (0.196) (0.361) (0.127)

(0.009) (0.000) (0.003) (0.020) (0.000) (0.015) (0.076) (0.000) (0.145)

BICM Adjusted -0.7% 13.6% -0.05 1.3% 13.7% 0.09 -0.7% 14.0% -0.05 

(0.055) (0.905) (0.008) (0.002) (0.915) (0.000) (0.062) (0.953) (0.009)

(0.022) (0.000) (0.010) (0.001) (0.000) (0.000) (0.025) (0.000) (0.011)

Mean Std SR Mean Std SR Mean Std SR

Historical Covariance (HC) -3.7% 12.5% -0.29 -3.7% 12.5% -0.29 -3.7% 12.5% -0.29 

Equally Weighted (EW) -4.2% 18.4% -0.23 -4.2% 18.4% -0.23 -4.2% 18.4% -0.23 

(0.629) (1.000) (0.213) (0.629) (1.000) (0.213) (0.629) (1.000) (0.213)

Ledoit & Wolf Model (LW) -3.9% 12.5% -0.31 -3.9% 12.5% -0.31 -3.9% 12.5% -0.31 

(0.573) (0.486) (0.604) (0.573) (0.486) (0.604) (0.573) (0.486) (0.604)

(0.427) (0.000) (0.857) (0.427) (0.000) (0.857) (0.427) (0.000) (0.857)

Mixed Model (MICM) -1.2% 12.3% -0.10 -1.8% 12.4% -0.14 -2.4% 12.6% -0.19 

(0.037) (0.377) (0.008) (0.084) (0.445) (0.030) (0.169) (0.506) (0.092)

(0.041) (0.000) (0.050) (0.077) (0.000) (0.137) (0.138) (0.000) (0.295)

Mixed Model Mean Alpha -2.0% 12.2% -0.17 -2.6% 12.3% -0.21 -2.7% 12.4% -0.21 

(MICMm) (0.113) (0.349) (0.055) (0.225) (0.403) (0.161) (0.227) (0.437) (0.158)

(0.098) (0.000) (0.208) (0.176) (0.000) (0.422) (0.177) (0.000) (0.418)

Implied Variance (IVH) 1.5% 11.9% 0.12 -0.1% 12.1% -0.01 -1.0% 12.2% -0.08 

(0.000) (0.215) (0.000) (0.004) (0.293) (0.000) (0.023) (0.349) (0.003)

(0.000) (0.000) (0.000) (0.008) (0.000) (0.002) (0.028) (0.000) (0.026)

AHCM 1.2% 12.4% 0.09 0.3% 12.2% 0.02 -0.7% 12.7% -0.05 

(0.000) (0.413) (0.000) (0.002) (0.348) (0.000) (0.015) (0.579) (0.001)

(0.001) (0.000) (0.000) (0.004) (0.000) (0.001) (0.020) (0.000) (0.012)

BICM -0.8% 12.4% -0.06 -1.3% 12.5% -0.10 -1.9% 12.5% -0.15 

(0.016) (0.431) (0.002) (0.041) (0.459) (0.008) (0.096) (0.459) (0.036)

(0.021) (0.000) (0.015) (0.044) (0.000) (0.054) (0.086) (0.000) (0.157)

BICM Adjusted -1.9% 13.6% -0.14 -0.3% 14.0% -0.02 -1.5% 14.3% -0.10 

(0.114) (0.891) (0.029) (0.010) (0.932) (0.000) (0.068) (0.963) (0.008)

(0.098) (0.000) (0.133) (0.014) (0.000) (0.004) (0.063) (0.000) (0.052)

Table A1 (cont.)

Panel C: Minimum-Variance With Threshold Weights

30 Days 60 Days 90 Days

Panel B: Minimum-Variance Without Short Selling

30 Days 60 Days 90 Days
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Mean Std SR Mean Std SR Mean Std SR Mean Std SR
1 -1 1 1 -1 1 1 -1 1 1 -1 1

Historical Covariance (HC) 8.9% 13.6% 0.66 -28.1% 21.2% -1.32 2.3% 10.5% 0.22 -14.3% 16.5% -0.86 

Equally Weighted (EW) 10.3% 15.2% 0.68 -35.9% 25.3% -1.42 10.3% 15.2% 0.68 -35.9% 25.3% -1.42 

(0.228) (0.947) (0.414) (0.955) (0.936) (0.689) (0.000) (1.000) (0.000) (1.000) (1.000) (1.000)

Ledoit & Wolf Model (LW) 8.9% 13.7% 0.65 -28.2% 21.5% -1.31 1.5% 10.5% 0.15 -13.5% 16.6% -0.81 

(0.501) (0.558) (0.527) (0.512) (0.537) (0.482) (0.706) (0.489) (0.774) (0.404) (0.504) (0.383)

(0.772) (0.070) (0.611) (0.048) (0.076) (0.301) (1.000) (0.000) (1.000) (0.000) (0.000) (0.001)

Mixed Model (MICM) 9.4% 13.5% 0.69 -27.9% 21.1% -1.32 6.4% 10.1% 0.63 -19.1% 15.8% -1.21 

(0.399) (0.468) (0.358) (0.479) (0.478) (0.497) (0.001) (0.254) (0.000) (0.936) (0.367) (0.984)

(0.694) (0.044) (0.441) (0.040) (0.058) (0.314) (0.989) (0.000) (0.671) (0.000) (0.000) (0.141)

Mixed Model Mean Alpha 9.3% 13.5% 0.69 -28.5% 21.1% -1.35 5.3% 10.0% 0.53 -17.5% 15.7% -1.12 

(MICMm) (0.415) (0.476) (0.381) (0.537) (0.484) (0.552) (0.014) (0.194) (0.001) (0.851) (0.339) (0.944)

(0.708) (0.045) (0.466) (0.053) (0.060) (0.363) (0.998) (0.000) (0.931) (0.000) (0.000) (0.063)

Implied Variance (IVH) 8.5% 12.7% 0.67 -24.1% 19.0% -1.27 7.6% 10.2% 0.75 -13.7% 14.8% -0.92 

(0.590) (0.152) (0.440) (0.154) (0.179) (0.383) (0.000) (0.285) (0.000) (0.423) (0.187) (0.650)

(0.837) (0.004) (0.526) (0.004) (0.008) (0.222) (0.945) (0.000) (0.261) (0.000) (0.000) (0.006)

AHCM 9.6% 13.7% 0.70 -29.1% 21.5% -1.35 9.0% 10.6% 0.85 -16.4% 15.6% -1.05 

(0.350) (0.572) (0.339) (0.591) (0.533) (0.567) (0.000) (0.528) (0.000) (0.748) (0.323) (0.873)

(0.648) (0.072) (0.422) (0.069) (0.076) (0.377) (0.784) (0.000) (0.052) (0.000) (0.000) (0.029)

BICM 9.2% 14.0% 0.65 -28.8% 22.3% -1.29 4.4% 10.6% 0.41 -10.0% 15.5% -0.64 

(0.447) (0.693) (0.519) (0.562) (0.665) (0.429) (0.068) (0.528) (0.019) (0.086) (0.300) (0.087)

(0.729) (0.126) (0.603) (0.064) (0.129) (0.258) (1.000) (0.000) (0.995) (0.000) (0.000) (0.000)

BICM Adjusted 8.8% 14.3% 0.62 -30.3% 22.5% -1.34 6.2% 11.7% 0.53 -15.6% 17.6% -0.89 

(0.526) (0.775) (0.657) (0.696) (0.693) (0.547) (0.004) (0.955) (0.000) (0.660) (0.693) (0.565)

(0.786) (0.182) (0.731) (0.116) (0.146) (0.358) (0.989) (0.000) (0.922) (0.000) (0.001) (0.003)

Table A2

Forecasting Power of Option-Implied Variances and Covariances ï Crisis and Non-Crisis States

Table A2 shows the performance of different portfolio strategies using historical and option implied information. The results are presented for the S&P 100 index. The portfolio

strategies used are the equal risk contribution (ERC) and the minimum variance without short selling optimization. The results of the option implied strategies are generally

compared to the ones using historical moment estimations. The moments of the option implied strategies are derived from 30 days-to-maturity options. The results for good and bad

market states are depicted seperately for each strategy, depicted as non-crisis and crisis states. The performance measures depicted are the sample average of the observed monthly

means, the average of the observed monthly standard deviations (Std), and the average of the observed monthly Sharpe ratios (SR). All terms are anuualized. The values in parentheses

depict the p-values of a one-sided t-test for higher mean, lower standard deviation, and higher Sharpe ratio in comparison to the HC and the EW strategy. The period under study is

from December 1997 to January 2012, applying a monthly rebalancing approach.

Non-Crisis States Crisis States

Equal Risk Contribution (ERC) Minimum-Variance Without Short Selling

Non-Crisis States Crisis States
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Mean Std SR MTO MDD Mean Std SR MTO MDD Mean Std SR MTO MDD

Historical Covariance (HC) 3.4% 17.8% 0.19 9.0% 28.1% 3.4% 17.8% 0.19 9.0% 28.1% 3.4% 17.8% 0.19 9.0% 28.1%

Equally Weighted (EW) 3.4% 20.5% 0.17 7.3% 30.1% 3.4% 20.5% 0.17 7.3% 30.1% 3.4% 20.5% 0.17 7.3% 30.1%

(0.496) (0.963) (0.630) (0.496) (0.963) (0.630) (0.496) (0.963) (0.630)

Ledoit & Wolf Model (LW) 3.3% 17.9% 0.19 8.2% 28.1% 3.3% 17.9% 0.19 8.2% 28.1% 3.3% 17.9% 0.19 8.2% 28.1%

(0.483) (0.530) (0.529) (0.483) (0.530) (0.529) (0.483) (0.530) (0.529)

(0.488) (0.043) (0.398) (0.488) (0.043) (0.398) (0.488) (0.043) (0.398)

Mixed Model (MICM) 3.5% 17.7% 0.20 18.8% 27.3% 3.4% 17.6% 0.19 19.4% 27.3% 3.5% 17.7% 0.20 20.1% 27.6%

(0.482) (0.479) (0.471) (0.495) (0.448) (0.498) (0.487) (0.459) (0.474)

(0.480) (0.033) (0.343) (0.499) (0.027) (0.368) (0.485) (0.029) (0.346)

Mixed Model Mean Alpha 3.3% 17.7% 0.19 15.8% 27.4% 3.4% 17.7% 0.19 16.3% 27.4% 3.4% 17.7% 0.19 17.1% 27.5%

(MICMm) (0.481) (0.484) (0.524) (0.489) (0.466) (0.509) (0.491) (0.465) (0.506)

(0.486) (0.033) (0.392) (0.493) (0.030) (0.379) (0.495) (0.030) (0.376)

Implied Variance (IVH) 2.9% 16.3% 0.18 27.4% 25.9% 2.8% 16.2% 0.17 23.6% 26.0% 2.8% 16.1% 0.18 23.8% 26.3%

(0.395) (0.127) (0.564) (0.371) (0.106) (0.593) (0.377) (0.096) (0.579)

(0.407) (0.002) (0.433) (0.384) (0.001) (0.462) (0.390) (0.001) (0.448)

AHCM 3.2% 18.1% 0.18 21.2% 27.7% 3.2% 18.0% 0.18 14.2% 27.8% 2.9% 18.1% 0.16 12.3% 28.0%

(0.464) (0.595) (0.568) (0.452) (0.570) (0.580) (0.402) (0.581) (0.650)

(0.470) (0.060) (0.436) (0.459) (0.053) (0.449) (0.412) (0.056) (0.522)

BICM 2.9% 18.3% 0.16 11.5% 27.9% 2.9% 18.3% 0.16 9.0% 28.0% 2.9% 18.3% 0.16 8.0% 28.2%

(0.407) (0.649) (0.654) (0.405) (0.637) (0.655) (0.406) (0.643) (0.655)

(0.417) (0.079) (0.526) (0.415) (0.075) (0.527) (0.416) (0.077) (0.527)

BICM Adjusted 3.2% 19.0% 0.17 43.8% 28.0% 3.2% 18.3% 0.17 29.1% 27.6% 3.0% 18.6% 0.16 22.3% 28.4%

(0.460) (0.798) (0.615) (0.458) (0.640) (0.585) (0.414) (0.709) (0.655)

(0.466) (0.168) (0.484) (0.464) (0.076) (0.454) (0.424) (0.106) (0.527)

Panel A: Equal Risk Contribution (ERC)

Table A3

Performance of Option-Implied Portfolios using the S&P 100 Constituents

Table A3 shows the performance of different portfolio strategies using historical and option implied information. The results are presented for the S&P 100 index. Panel A, B, and C

show the results using the equal risk contribution (ERC), the minimum variance without short selling, and the minimum variance with threshold optimization. The results of the option

implied strategies are generally compared to the ones using historical moment estimations. The moments of the option implied strategies are derived from 30, 60, and 90 days-to-

maturity options. The performance measures depicted are the mean of the mean return, the standard deviation (Std), the Sharpe ratio (SR), the mean portfolio turnover (MTO), and the

maximum portfolio drawdown (MDD). Mean and standard deviation terms are annualized. The values in parentheses depict the p-values of a one-sided t-test for higher mean, a one-

sided F-test for lower standard deviation, and a one-sided test for normality of higher Sharpe ratio in comparison to the HC and the EW strategy. The period under study is from

December 1997 to January 2012, applying a monthly rebalancing approach.

30 Days 60 Days 90 Days
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Mean Std SR MTO MDD Mean Std SR MTO MDD Mean Std SR MTO MDD

Historical Covariance (HC) 1.2% 13.4% 0.09 36.8% 22.9% 1.2% 13.4% 0.09 36.8% 22.9% 1.2% 13.4% 0.09 36.8% 22.9%

Equally Weighted (EW) 3.4% 20.5% 0.17 7.3% 30.1% 3.4% 20.5% 0.17 7.3% 30.1% 3.4% 20.5% 0.17 7.3% 30.1%

(0.122) (1.000) (0.158) (0.122) (1.000) (0.158) (0.122) (1.000) (0.158)

Ledoit & Wolf Model (LW) 0.8% 13.4% 0.06 32.2% 22.3% 0.8% 13.4% 0.06 32.2% 22.3% 0.8% 13.4% 0.06 32.2% 22.3%

(0.387) (0.495) (0.657) (0.387) (0.495) (0.657) (0.387) (0.495) (0.657)

(0.083) (0.000) (0.919) (0.083) (0.000) (0.919) (0.083) (0.000) (0.919)

Mixed Model (MICM) 1.7% 14.0% 0.12 96.7% 25.5% 1.6% 14.1% 0.11 94.7% 25.2% 1.4% 14.2% 0.10 93.6% 24.8%

(0.367) (0.693) (0.334) (0.386) (0.732) (0.365) (0.435) (0.754) (0.434)

(0.188) (0.000) (0.716) (0.178) (0.000) (0.743) (0.155) (0.000) (0.797)

Mixed Model Mean Alpha 1.4% 13.5% 0.10 87.3% 25.0% 1.1% 13.5% 0.08 86.4% 24.9% 1.3% 13.7% 0.09 87.2% 25.1%

(MICMm) (0.452) (0.527) (0.435) (0.475) (0.516) (0.536) (0.481) (0.588) (0.481)

(0.142) (0.000) (0.798) (0.113) (0.000) (0.862) (0.131) (0.000) (0.829)

Implied Variance (IVH) 2.5% 13.3% 0.19 112.7% 24.3% 3.0% 12.9% 0.24 99.0% 22.6% 2.4% 13.0% 0.18 98.6% 23.8%

(0.181) (0.451) (0.096) (0.100) (0.286) (0.029) (0.202) (0.342) (0.109)

(0.322) (0.000) (0.382) (0.423) (0.000) (0.185) (0.297) (0.000) (0.409)

AHCM 3.0% 14.7% 0.21 119.0% 27.2% 2.3% 13.2% 0.18 101.0% 24.2% 1.5% 14.1% 0.10 96.1% 23.8%

(0.114) (0.869) (0.061) (0.219) (0.392) (0.129) (0.426) (0.727) (0.418)

(0.429) (0.000) (0.295) (0.283) (0.000) (0.448) (0.158) (0.000) (0.786)

BICM 1.0% 13.2% 0.08 98.6% 23.9% 0.8% 13.3% 0.06 83.3% 24.0% -0.1% 13.4% -0.01 76.1% 24.6%

(0.462) (0.412) (0.546) (0.389) (0.444) (0.651) (0.182) (0.480) (0.900)

(0.107) (0.000) (0.867) (0.083) (0.000) (0.917) (0.031) (0.000) (0.988)

BICM Adjusted 4.0% 15.1% 0.26 109.7% 26.8% 7.4% 15.8% 0.47 101.1% 26.0% 6.7% 15.9% 0.42 91.6% 25.7%

(0.038) (0.937) (0.012) (0.000) (0.982) (0.000) (0.000) (0.985) (0.000)

(0.384) (0.000) (0.107) (0.024) (0.000) (0.000) (0.052) (0.001) (0.001)

Panel B: Minimum-Variance Without Short Selling

30 Days 60 Days 90 Days

Table A3 (cont.)
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Mean Std SR MTO MDD Mean Std SR MTO MDD Mean Std SR MTO MDD

Historical Covariance (HC) 0.8% 13.6% 0.06 33.8% 23.7% 0.8% 13.6% 0.06 33.8% 23.7% 0.8% 13.6% 0.06 33.8% 23.7%

Equally Weighted (EW) 3.4% 20.5% 0.17 7.3% 30.1% 3.4% 20.5% 0.17 7.3% 30.1% 3.4% 20.5% 0.17 7.3% 30.1%

(0.084) (1.000) (0.078) (0.084) (1.000) (0.078) (0.084) (1.000) (0.078)

Ledoit & Wolf Model (LW) 0.3% 13.6% 0.02 28.9% 23.2% 0.3% 13.6% 0.02 28.9% 23.2% 0.3% 13.6% 0.02 28.9% 23.2%

(0.387) (0.500) (0.658) (0.387) (0.500) (0.658) (0.387) (0.500) (0.658)

(0.054) (0.000) (0.965) (0.054) (0.000) (0.965) (0.054) (0.000) (0.965)

Mixed Model (MICM) 2.2% 14.0% 0.16 91.8% 25.3% 2.0% 14.2% 0.14 90.3% 25.2% 1.8% 14.4% 0.13 89.3% 24.8%

(0.171) (0.642) (0.096) (0.217) (0.718) (0.146) (0.249) (0.775) (0.186)

(0.268) (0.000) (0.543) (0.229) (0.000) (0.641) (0.207) (0.000) (0.699)

Mixed Model Mean Alpha 1.5% 13.9% 0.11 82.8% 25.0% 1.0% 14.0% 0.07 81.8% 24.9% 1.2% 14.1% 0.09 82.8% 25.1%

(MICMm) (0.319) (0.615) (0.260) (0.430) (0.634) (0.410) (0.382) (0.689) (0.349)

(0.159) (0.000) (0.779) (0.110) (0.000) (0.881) (0.130) (0.000) (0.846)

Implied Variance (IVH) 3.2% 13.4% 0.24 102.5% 24.2% 2.3% 12.8% 0.18 89.6% 20.9% 1.7% 13.2% 0.13 86.7% 21.8%

(0.051) (0.433) (0.010) (0.141) (0.222) (0.053) (0.262) (0.353) (0.175)

(0.458) (0.000) (0.178) (0.284) (0.000) (0.421) (0.185) (0.000) (0.683)

AHCM 3.3% 14.7% 0.22 113.6% 27.2% 2.1% 13.1% 0.16 92.5% 21.7% 1.3% 14.3% 0.09 86.2% 23.9%

(0.053) (0.834) (0.016) (0.185) (0.326) (0.094) (0.373) (0.741) (0.341)

(0.475) (0.000) (0.231) (0.243) (0.000) (0.539) (0.135) (0.000) (0.841)

BICM 0.8% 13.2% 0.06 89.2% 24.3% 0.6% 13.0% 0.04 69.8% 23.8% 0.0% 13.0% -0.00 61.5% 24.6%

(0.491) (0.358) (0.479) (0.447) (0.266) (0.562) (0.287) (0.272) (0.782)

(0.085) (0.000) (0.912) (0.067) (0.000) (0.941) (0.033) (0.000) (0.985)

BICM Adjusted 2.7% 15.2% 0.18 98.7% 25.3% 5.9% 15.9% 0.37 93.7% 24.5% 6.4% 15.9% 0.40 83.0% 24.7%

(0.114) (0.921) (0.061) (0.001) (0.976) (0.000) (0.000) (0.978) (0.000)

(0.358) (0.000) (0.448) (0.107) (0.001) (0.004) (0.068) (0.001) (0.001)

30 Days 60 Days 90 Days

Panel C: Minimum-Variance With Threshold Weights

Table A3 (cont.)
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Mean Std SR MTO MDD Mean Std SR MTO MDD
1 -1 1 1 -1 1

Historical Covariance (HC) 12.2% 13.4% 0.91 12.0% 28.1% -15.7% 25.4% -0.62 7.7% 20.0%

Equally Weighted (EW) 13.8% 15.3% 0.90 10.0% 30.1% -19.2% 29.4% -0.65 6.2% 23.9%

(0.204) (0.922) (0.542) (0.741) (0.853) (0.588)

Ledoit & Wolf Model (LW) 12.3% 13.5% 0.91 10.8% 28.1% -16.1% 25.4% -0.63 7.0% 20.4%

(0.490) (0.552) (0.528) (0.528) (0.503) (0.535)

(0.788) (0.099) (0.487) (0.281) (0.149) (0.447)

Mixed Model (MICM) 12.5% 13.5% 0.93 21.4% 27.3% -16.0% 25.1% -0.64 17.8% 20.4%

(0.443) (0.531) (0.456) (0.523) (0.469) (0.548)

(0.755) (0.090) (0.414) (0.275) (0.130) (0.459)

Mixed Model Mean Alpha 12.4% 13.4% 0.93 17.7% 27.4% -16.5% 25.2% -0.65 15.0% 20.2%

(MICMm) (0.451) (0.519) (0.457) (0.562) (0.479) (0.592)

(0.761) (0.085) (0.415) (0.307) (0.135) (0.504)

Implied Variance (IVH) 11.5% 12.4% 0.93 31.7% 25.9% -15.8% 22.9% -0.69 25.6% 17.9%

(0.658) (0.210) (0.443) (0.505) (0.229) (0.681)

(0.890) (0.013) (0.402) (0.254) (0.037) (0.597)

AHCM 12.5% 13.7% 0.91 25.3% 27.7% -16.8% 25.7% -0.65 19.5% 21.2%

(0.441) (0.612) (0.516) (0.591) (0.539) (0.595)

(0.751) (0.128) (0.474) (0.333) (0.171) (0.507)

BICM 12.4% 13.9% 0.90 12.2% 27.9% -17.7% 26.0% -0.68 11.3% 21.4%

(0.449) (0.659) (0.564) (0.653) (0.568) (0.658)

(0.756) (0.156) (0.523) (0.391) (0.190) (0.573)

BICM Adjusted 13.2% 14.6% 0.90 34.0% 28.0% -18.5% 26.6% -0.70 48.6% 21.5%

(0.298) (0.831) (0.541) (0.708) (0.629) (0.696)

(0.617) (0.321) (0.500) (0.450) (0.235) (0.613)

Non-Crisis States Crisis States

Panel A: Equal Risk Contribution (ERC)

Table A4

Performance of Option-Implied Portfolios using the S&P 100 Constituents ï Crisis and Non-Crisis States

Table A4 shows the performance of different portfolio strategies using historical and option implied information. The results are

presented for the S&P 100 index. Panel A, B, and C show the results using the equal risk contribution (ERC), the minimum

variance without short selling, and the minimum variance with threshold optimization. The results of the option implied strategies

are generally compared to the ones using historical moment estimations. The moments of the option implied strategies are derived 

from 30 days-to-maturity options. The results for good and bad market states are depicted seperately for each strategy, depicted as

non-crisis and crisis states. The performance measures depicted are the mean of the mean return, the standard deviation (Std), the

Sharpe ratio (SR), the mean portfolio turnover (MTO), and the maximum portfolio drawdown (MDD). Mean and standard deviation

terms are annualized. The values in parentheses depict the p-values of a one-sided t-test for higher mean, a one-sided F-test for

lower standard deviation, and a one-sided test for normality of higher Sharpe ratio in comparison to the HC and the EW strategy.

The period under study is from December 1997 to January 2012, applying a monthly rebalancing approach.
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Mean Std SR MTO MDD Mean Std SR MTO MDD

Historical Covariance (HC) 5.9% 9.9% 0.59 41.9% 22.9% -9.0% 19.2% -0.47 34.8% 12.9%

Equally Weighted (EW) 13.8% 15.3% 0.90 10.0% 30.1% -19.2% 29.4% -0.65 6.2% 23.9%

(0.000) (1.000) (0.001) (0.981) (0.999) (0.897)

Ledoit & Wolf Model (LW) 5.1% 10.0% 0.51 37.8% 22.3% -8.7% 19.0% -0.46 29.9% 13.2%

(0.711) (0.538) (0.781) (0.473) (0.481) (0.472)

(1.000) (0.000) (1.000) (0.016) (0.001) (0.101)

Mixed Model (MICM) 8.6% 10.0% 0.86 101.0% 25.3% -13.3% 20.3% -0.65 95.6% 14.8%

(0.020) (0.518) (0.004) (0.866) (0.661) (0.899)

(0.999) (0.000) (0.636) (0.117) (0.004) (0.504)

Mixed Model Mean Alpha 7.6% 9.8% 0.78 91.7% 25.0% -12.2% 19.6% -0.62 86.1% 13.5%

(MICMm) (0.092) (0.461) (0.036) (0.802) (0.558) (0.857)

(1.000) (0.000) (0.874) (0.077) (0.002) (0.424)

Implied Variance (IVH) 8.9% 10.4% 0.86 117.7% 21.5% -11.3% 18.0% -0.63 111.4% 17.0%

(0.013) (0.690) (0.005) (0.739) (0.327) (0.864)

(0.998) (0.000) (0.660) (0.050) (0.000) (0.437)

AHCM 8.6% 10.9% 0.79 131.0% 27.2% -9.0% 20.4% -0.44 114.5% 17.9%

(0.024) (0.853) (0.028) (0.504) (0.677) (0.426)

(0.998) (0.000) (0.851) (0.021) (0.005) (0.083)

BICM 6.1% 10.6% 0.57 106.6% 23.2% -9.9% 17.8% -0.56 95.8% 15.7%

(0.434) (0.772) (0.574) (0.601) (0.295) (0.730)

(1.000) (0.000) (0.998) (0.026) (0.000) (0.266)

BICM Adjusted 10.3% 11.5% 0.90 124.6% 26.8% -9.8% 21.1% -0.46 103.8% 15.8%

(0.001) (0.940) (0.001) (0.578) (0.749) (0.485)

(0.974) (0.001) (0.517) (0.031) (0.009) (0.106)

Mean Std SR MTO MDD Mean Std SR MTO MDD

Historical Covariance (HC) 6.2% 9.8% 0.63 37.3% 23.7% -11.0% 19.7% -0.56 32.5% 12.9%

Equally Weighted (EW) 13.8% 15.3% 0.90 10.0% 30.1% -19.2% 29.4% -0.65 6.2% 23.9%

(0.000) (1.000) (0.004) (0.953) (0.998) (0.741)

Ledoit & Wolf Model (LW) 5.5% 9.9% 0.56 32.7% 23.2% -10.9% 19.5% -0.56 27.5% 12.9%

(0.696) (0.563) (0.773) (0.491) (0.479) (0.499)

(1.000) (0.000) (0.999) (0.045) (0.002) (0.263)

Mixed Model (MICM) 8.9% 9.9% 0.90 94.8% 25.3% -12.4% 20.5% -0.61 91.3% 13.6%

(0.017) (0.557) (0.004) (0.646) (0.619) (0.628)

(0.998) (0.000) (0.491) (0.087) (0.005) (0.378)

Mixed Model Mean Alpha 8.3% 9.9% 0.84 87.5% 25.0% -13.4% 20.4% -0.65 81.5% 13.1%

(MICMm) (0.049) (0.545) (0.019) (0.731) (0.605) (0.746)

(0.999) (0.000) (0.702) (0.121) (0.005) (0.506)

Implied Variance (IVH) 9.7% 10.3% 0.94 101.8% 21.4% -10.9% 18.5% -0.59 103.7% 16.9%

(0.004) (0.709) (0.001) (0.490) (0.324) (0.585)

(0.991) (0.000) (0.361) (0.042) (0.001) (0.337)

AHCM 8.8% 10.7% 0.82 120.6% 27.2% -8.8% 20.8% -0.42 111.4% 17.4%

(0.026) (0.841) (0.032) (0.288) (0.653) (0.179)

(0.998) (0.000) (0.765) (0.019) (0.007) (0.063)

BICM 6.2% 10.3% 0.60 91.2% 23.2% -11.0% 18.2% -0.60 89.0% 14.9%

(0.486) (0.720) (0.612) (0.500) (0.288) (0.620)

(1.000) (0.000) (0.997) (0.044) (0.000) (0.370)

BICM Adjusted 10.0% 11.4% 0.87 113.3% 24.2% -13.2% 21.5% -0.61 93.0% 15.8%

(0.003) (0.952) (0.009) (0.711) (0.736) (0.651)

(0.983) (0.001) (0.597) (0.118) (0.013) (0.401)

Table A4 (cont.)

Panel C: Minimum Variance With Threshold Weights

Non-Crisis States Crisis States

Panel B: Minimum Variance Without Short Selling

Non-Crisis States Crisis States
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